Impact of strain on access resistance in planar and nanowire CMOS devices

R. Berthelon, F. Andneu, F. Triozon, M. Cassé, L. Bourdet, G. Ghibaudo, D. Rideau, Y. Niquet, S. Barraud, P. Nguyen, C. Le Royer, J. Lacord, C. Tabone, O. Rozeau, D. Dutartre, A. Claverie, E. Josse, F. Arnaud, M. Vinet
{"title":"Impact of strain on access resistance in planar and nanowire CMOS devices","authors":"R. Berthelon, F. Andneu, F. Triozon, M. Cassé, L. Bourdet, G. Ghibaudo, D. Rideau, Y. Niquet, S. Barraud, P. Nguyen, C. Le Royer, J. Lacord, C. Tabone, O. Rozeau, D. Dutartre, A. Claverie, E. Josse, F. Arnaud, M. Vinet","doi":"10.23919/VLSIT.2017.7998180","DOIUrl":null,"url":null,"abstract":"We fabricated and in-depth characterized advanced planar and nanowire CMOS devices, strained by the substrate (sSOI or SiGe channel) and by the process (CESL, SiGe source/drain). We have built a novel access resistance (R<inf>ACC</inf>) extraction procedure, which enables us to clearly evidence the strong impact of back-bias and strain on R<inf>acc</inf> (−21% for 4 V V<inf>b</inf> and −53% for −1GPa stress on pMOS FDSOI). This is in agreement with Non-Equilibrium-Green-Functions (NEGF) simulations. This RAcc(strain) dependence has been introduced into SPICE, leading to +6% increase of the RO frequency under ε<inf>n/p</inf>=0.8%/-0.5% strain, compared to the state-of-the-art model. It is thus mandatory for predictive benchmarking and optimized IC designs.","PeriodicalId":333275,"journal":{"name":"2017 Symposium on VLSI Technology","volume":"395 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2017.7998180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We fabricated and in-depth characterized advanced planar and nanowire CMOS devices, strained by the substrate (sSOI or SiGe channel) and by the process (CESL, SiGe source/drain). We have built a novel access resistance (RACC) extraction procedure, which enables us to clearly evidence the strong impact of back-bias and strain on Racc (−21% for 4 V Vb and −53% for −1GPa stress on pMOS FDSOI). This is in agreement with Non-Equilibrium-Green-Functions (NEGF) simulations. This RAcc(strain) dependence has been introduced into SPICE, leading to +6% increase of the RO frequency under εn/p=0.8%/-0.5% strain, compared to the state-of-the-art model. It is thus mandatory for predictive benchmarking and optimized IC designs.
应变对平面和纳米线CMOS器件存取电阻的影响
我们制作并深入表征了先进的平面和纳米线CMOS器件,通过衬底(sSOI或SiGe通道)和工艺(CESL, SiGe源/漏)进行应变。我们已经建立了一种新的存取电阻(RACC)提取程序,这使我们能够清楚地证明反向偏置和应变对RACC的强烈影响(在4 V Vb和- 1GPa应力下,pMOS FDSOI的存取电阻为- 21%和- 53%)。这与非平衡绿函数(NEGF)模拟一致。这种RAcc(应变)依赖性被引入SPICE中,在εn/p=0.8%/-0.5%应变下,与最先进的模型相比,RO频率增加了+6%。因此,它是强制性的预测基准测试和优化IC设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信