A machine learning approach to error detection and recovery in assembly

L. Lopes, L. Camarinha-Matos
{"title":"A machine learning approach to error detection and recovery in assembly","authors":"L. Lopes, L. Camarinha-Matos","doi":"10.1109/IROS.1995.525884","DOIUrl":null,"url":null,"abstract":"Research results concerning error detection and recovery in robotized assembly systems, key components of flexible manufacturing systems, are presented. A planning strategy and domain knowledge for nominal plan execution and for error recovery is described. A supervision architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Through the use of machine learning techniques, the supervision architecture will be given capabilities for improving its performance over time. Particular attention is given to the inductive generation of structured classification knowledge for diagnosis.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Research results concerning error detection and recovery in robotized assembly systems, key components of flexible manufacturing systems, are presented. A planning strategy and domain knowledge for nominal plan execution and for error recovery is described. A supervision architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Through the use of machine learning techniques, the supervision architecture will be given capabilities for improving its performance over time. Particular attention is given to the inductive generation of structured classification knowledge for diagnosis.
装配中错误检测和恢复的机器学习方法
介绍了柔性制造系统的关键部件——机器人装配系统中错误检测与恢复的研究成果。描述了用于名义计划执行和错误恢复的规划策略和领域知识。监督体系结构在不同的抽象级别上提供了调度操作、监视其执行以及诊断和从故障中恢复的功能。通过使用机器学习技术,监督架构将随着时间的推移而提高其性能。特别关注结构化分类知识的归纳生成用于诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信