Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru

Risky Agung Nurdian, Mujib Ridwan, Ahmad Yusuf
{"title":"Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru","authors":"Risky Agung Nurdian, Mujib Ridwan, Ahmad Yusuf","doi":"10.28932/jutisi.v8i1.4004","DOIUrl":null,"url":null,"abstract":"Universities annually accept new students at the beginning of the new school year. In the acceptance of prospective students on the Seleksi Prestasi Akademik Nasional Perguruan Tinggi Keagamaan Islam Negeri (SPAN PTKIN) di State Islamic University Of Sunan Ampel Surabaya, many prospective students who do not register will have an impact on income of the State Islamic University Of Sunan Ampel Surabaya institution. If the institution can find out early on the probability of a prospective student who will resign, then the management can take action to retain the prospective student. To overcome this, data mining classification can be carried out. The methods used in this classification are decision trees and naïve bayes. The number of students who did not re register compared to reregister resulted in the data being imbalanced. Data imbalances can affect the accuracy of the classification results. The imbalance of the data used can result in an unsuitable model. The solution to handle the data imbalance is to use the SMOTE and ADASYN oversampling methods. The purpose of this study was to compare performance of the SMOTE and ADASYN methods. The results show that the SMOTE method can balance the data in a balanced way compared to ADASYN. From the test results, the SMOTE method is more suitable to use than the ADASYN method because the ROCAUC SMOTE value is higher than ADASYN.\n ","PeriodicalId":185279,"journal":{"name":"Jurnal Teknik Informatika dan Sistem Informasi","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informatika dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28932/jutisi.v8i1.4004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Universities annually accept new students at the beginning of the new school year. In the acceptance of prospective students on the Seleksi Prestasi Akademik Nasional Perguruan Tinggi Keagamaan Islam Negeri (SPAN PTKIN) di State Islamic University Of Sunan Ampel Surabaya, many prospective students who do not register will have an impact on income of the State Islamic University Of Sunan Ampel Surabaya institution. If the institution can find out early on the probability of a prospective student who will resign, then the management can take action to retain the prospective student. To overcome this, data mining classification can be carried out. The methods used in this classification are decision trees and naïve bayes. The number of students who did not re register compared to reregister resulted in the data being imbalanced. Data imbalances can affect the accuracy of the classification results. The imbalance of the data used can result in an unsuitable model. The solution to handle the data imbalance is to use the SMOTE and ADASYN oversampling methods. The purpose of this study was to compare performance of the SMOTE and ADASYN methods. The results show that the SMOTE method can balance the data in a balanced way compared to ADASYN. From the test results, the SMOTE method is more suitable to use than the ADASYN method because the ROCAUC SMOTE value is higher than ADASYN.  
比较SMOTE方法和ADASYN在提高新生的分类成绩
大学每年都会在新学年开始时招收新生。在苏南安培尔泗水州立伊斯兰大学的Seleksi Prestasi Akademik Nasional Perguruan tingi Keagamaan Islam Negeri (SPAN PTKIN)上接受潜在学生时,许多未注册的潜在学生将对苏南安培尔泗水州立伊斯兰大学的收入产生影响。如果机构能够及早发现潜在学生辞职的可能性,那么管理层就可以采取措施留住潜在学生。为了克服这个问题,可以进行数据挖掘分类。在这种分类中使用的方法是决策树和naïve贝叶斯。与重新注册的学生相比,没有重新注册的学生数量过多,导致了数据的不平衡。数据不平衡会影响分类结果的准确性。所使用数据的不平衡可能导致不合适的模型。解决数据不平衡的方法是使用SMOTE和ADASYN过采样方法。本研究的目的是比较SMOTE和ADASYN方法的性能。结果表明,与ADASYN相比,SMOTE方法能够以均衡的方式平衡数据。从测试结果来看,由于ROCAUC SMOTE值高于ADASYN,因此SMOTE方法比ADASYN方法更适合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信