Enhanced Quantile Portfolio for Multifactor Model with Deep Learning

Masaya Abe, Kei Nakagawa
{"title":"Enhanced Quantile Portfolio for Multifactor Model with Deep Learning","authors":"Masaya Abe, Kei Nakagawa","doi":"10.1109/IIAIAAI55812.2022.00066","DOIUrl":null,"url":null,"abstract":"Stock return predictability is an important research theme as it reflects our economic and social organization, and significant efforts are made to explain the dynamism therein. Although machine learning methods are increasingly popular and effective in stock return prediction in the cross-section, still most of the previous studies rely on a simple quantile portfolio. In this paper, we apply deep learning for stock return prediction in the cross-section and propose a more sophisticated portfolio construction framework called Enhanced Quantile Portfolios. These portfolios are inspired by Pure Quantile Portfolio that overcome the main drawbacks of simple quantile portfolios based on a single sort. The formulation of Enhanced Quantile Portfolio is a quadratic programming problem that considers the trade-off between portfolio alpha and stock diversification, while maintaining the characteristics of a simple quantile portfolio. The experimental comparison shows that the proposed approach outperforms a simple quantile portfolio.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAIAAI55812.2022.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stock return predictability is an important research theme as it reflects our economic and social organization, and significant efforts are made to explain the dynamism therein. Although machine learning methods are increasingly popular and effective in stock return prediction in the cross-section, still most of the previous studies rely on a simple quantile portfolio. In this paper, we apply deep learning for stock return prediction in the cross-section and propose a more sophisticated portfolio construction framework called Enhanced Quantile Portfolios. These portfolios are inspired by Pure Quantile Portfolio that overcome the main drawbacks of simple quantile portfolios based on a single sort. The formulation of Enhanced Quantile Portfolio is a quadratic programming problem that considers the trade-off between portfolio alpha and stock diversification, while maintaining the characteristics of a simple quantile portfolio. The experimental comparison shows that the proposed approach outperforms a simple quantile portfolio.
基于深度学习的增强分位数组合多因素模型
股票收益的可预测性是一个重要的研究主题,因为它反映了我们的经济和社会组织,并作出了重大努力来解释其中的动力。尽管机器学习方法在横截面股票收益预测中越来越受欢迎和有效,但之前的大多数研究仍然依赖于简单的分位数投资组合。在本文中,我们将深度学习应用于横截面股票收益预测,并提出了一个更复杂的投资组合构建框架,称为增强分位投资组合。这些投资组合受到纯分位数投资组合的启发,克服了基于单一排序的简单分位数投资组合的主要缺点。增强型分位数投资组合的公式是一个二次规划问题,在保持简单分位数投资组合特征的同时,考虑了投资组合α和股票多样化之间的权衡。实验结果表明,该方法优于简单的分位数组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信