Object Classification Based on Channel State Information Using Feature Spaces

Maksim A. Lopatin, S. Fyodorov, Dong Ge
{"title":"Object Classification Based on Channel State Information Using Feature Spaces","authors":"Maksim A. Lopatin, S. Fyodorov, Dong Ge","doi":"10.1109/EExPolytech53083.2021.9614818","DOIUrl":null,"url":null,"abstract":"To date, a large amount of research has been carried out on the use of a Wi-Fi signal for positioning or classifying objects using Channel State Information (CSI). This paper explores the classification of metal objects placed between routers at a distance of 1 meter. In the future, this can be used as an additional means of control in narrow door openings. Based on the CSI amplitude values, feature spaces are calculated, which contain concentrated information about the classified objects. Feature spaces plots are shown. The result of the classification of physical Wi-Fi objects using the Random Forest algorithm was 83% using raw amplitude CSI values. Using feature spaces result was 99% with best combination of features.","PeriodicalId":141827,"journal":{"name":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EExPolytech53083.2021.9614818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To date, a large amount of research has been carried out on the use of a Wi-Fi signal for positioning or classifying objects using Channel State Information (CSI). This paper explores the classification of metal objects placed between routers at a distance of 1 meter. In the future, this can be used as an additional means of control in narrow door openings. Based on the CSI amplitude values, feature spaces are calculated, which contain concentrated information about the classified objects. Feature spaces plots are shown. The result of the classification of physical Wi-Fi objects using the Random Forest algorithm was 83% using raw amplitude CSI values. Using feature spaces result was 99% with best combination of features.
基于通道状态信息的特征空间对象分类
迄今为止,已经对使用Wi-Fi信号利用信道状态信息(CSI)对物体进行定位或分类进行了大量的研究。本文探讨了放置在路由器之间距离为1米的金属物体的分类。在未来,这可以作为一个额外的手段,在狭窄的门开口控制。基于CSI幅值计算特征空间,特征空间包含分类对象的集中信息。显示特征空间图。使用随机森林算法对物理Wi-Fi对象进行分类的结果是83%,使用原始振幅CSI值。使用特征空间,最佳特征组合的结果为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信