Saeed Ghamari, G. Tasselli, C. Botteron, P. Farine
{"title":"Design methodology for controlled-Q resonators in OTA-based filters","authors":"Saeed Ghamari, G. Tasselli, C. Botteron, P. Farine","doi":"10.1109/RFIC.2015.7337782","DOIUrl":null,"url":null,"abstract":"This paper presents a design methodology for high quality factor resonators based on operational transconductance amplifier (OTA) employed in active filters. The quality factor of a resonator, as its main specification, is translated to the requirements of the OTA. Moreover, the effects of the OTA's finite output resistance and internal poles are investigated. The results provide a useful chart and a simple methodology to design a resonator with a desired quality factor. The design methodology has been validated by fabricating a resonator with 8 MHz resonance frequency and a quality factor of around 10 using UMC 180-nm CMOS technology.","PeriodicalId":121490,"journal":{"name":"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2015.7337782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a design methodology for high quality factor resonators based on operational transconductance amplifier (OTA) employed in active filters. The quality factor of a resonator, as its main specification, is translated to the requirements of the OTA. Moreover, the effects of the OTA's finite output resistance and internal poles are investigated. The results provide a useful chart and a simple methodology to design a resonator with a desired quality factor. The design methodology has been validated by fabricating a resonator with 8 MHz resonance frequency and a quality factor of around 10 using UMC 180-nm CMOS technology.