{"title":"A generalized accurate modelling method for automotive bulk current injection (BCI) test setups up to 1 GHz","authors":"S. Miropolsky, Alexander Sapadinsky, S. Frei","doi":"10.1109/EMCCOMPO.2013.6735174","DOIUrl":null,"url":null,"abstract":"Development of accurate system models of immunity test setups might be extremely time consuming or even impossible. Here a new generalized approach to develop accurate component-based models of different system-level EMC test setups is proposed on the example of a BCI test setup. An equivalent circuit modelling of the components in LF range is combined with measurement-based macromodelling in HF range. The developed models show high accuracy up to 1 GHz. The issues of floating PCB configurations and incorporation of low frequency behaviour could be solved. Both frequency and time-domain simulations are possible. Arbitrary system configurations can be assembled quickly using the proposed component models. Any kind of system simulation like parametric variation and worst-case analysis can be performed with high accuracy.","PeriodicalId":302757,"journal":{"name":"2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCCOMPO.2013.6735174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Development of accurate system models of immunity test setups might be extremely time consuming or even impossible. Here a new generalized approach to develop accurate component-based models of different system-level EMC test setups is proposed on the example of a BCI test setup. An equivalent circuit modelling of the components in LF range is combined with measurement-based macromodelling in HF range. The developed models show high accuracy up to 1 GHz. The issues of floating PCB configurations and incorporation of low frequency behaviour could be solved. Both frequency and time-domain simulations are possible. Arbitrary system configurations can be assembled quickly using the proposed component models. Any kind of system simulation like parametric variation and worst-case analysis can be performed with high accuracy.