Detection of thermal donors from electrically active oxygen interstitials by optical second harmonic generation

M. Lei, Jacqueline Zou, Justin Lee, J. Changala, B. Larzelere
{"title":"Detection of thermal donors from electrically active oxygen interstitials by optical second harmonic generation","authors":"M. Lei, Jacqueline Zou, Justin Lee, J. Changala, B. Larzelere","doi":"10.1109/ASMC.2018.8373208","DOIUrl":null,"url":null,"abstract":"Substrate resistivity stability has become the most critical control for radio frequency (RF) device manufacturing. In this paper, we demonstrate nonlinear optics based metrology to measure electrically active oxygen interstitial sites (Oi) in high resistive bulk Si wafers, which are vulnerable to electric and mechanical property drift during device fabrication. Time dependent second harmonic generation (TD-SHG) governed by electric-field induced second harmonic (EFISH) effect provides consistent detection of thermal donors originating from Oi distributed near Si interface. The successful concept proof can be extended to test pad design for in-line monitor of substrate resistivity variations from annealing processes.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Substrate resistivity stability has become the most critical control for radio frequency (RF) device manufacturing. In this paper, we demonstrate nonlinear optics based metrology to measure electrically active oxygen interstitial sites (Oi) in high resistive bulk Si wafers, which are vulnerable to electric and mechanical property drift during device fabrication. Time dependent second harmonic generation (TD-SHG) governed by electric-field induced second harmonic (EFISH) effect provides consistent detection of thermal donors originating from Oi distributed near Si interface. The successful concept proof can be extended to test pad design for in-line monitor of substrate resistivity variations from annealing processes.
利用光学二次谐波产生法检测电活性氧间隙的热给体
衬底电阻率稳定性已成为射频器件制造中最关键的控制因素。在本文中,我们展示了基于非线性光学的测量方法来测量高阻体硅片中的电活性氧间隙位(Oi),这些空位在器件制造过程中容易受到电气和机械性能漂移的影响。由电场诱导的二次谐波(EFISH)效应控制的时间相关二次谐波产生(TD-SHG)提供了对分布在Si界面附近的Oi的热供体的一致检测。成功的概念证明可以扩展到衬底电阻率变化的在线监测衬底退火过程的测试板设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信