Tikhonov regularization using a minimum-product criterion: Application to brain electrical tomography

E.M. Ventouras, C. Papageorgiou, N. Uzunoglu, G.N. Christodoulou
{"title":"Tikhonov regularization using a minimum-product criterion: Application to brain electrical tomography","authors":"E.M. Ventouras, C. Papageorgiou, N. Uzunoglu, G.N. Christodoulou","doi":"10.1109/IEMBS.2001.1019008","DOIUrl":null,"url":null,"abstract":"Tikhonov regularization is applied to the inversion of EEG potentials. The discrete model of the inversion problem results from an analytic technique providing information about extended intracranial distributions, with separate current source and sink positions. A three-layered concentric sphere model is used for representing head geometry. The selected regularization parameter is the minimizer of the product of the norm of the Tikhonov regularized solution and the norm of the corresponding residual. The simulations performed indicate that this regularization parameter selection method is more robust than the empirical composite residual and smoothing operator (CRESO) approach, in cases where only gaussian measurement noise exists in the discrete inverse model equation. Therefore the minimum product criterion can be used in real evoked potentials' data inversions, for the creation of brain electrical activity tomographic images, when the amount of noise present in the measured data is unknown.","PeriodicalId":386546,"journal":{"name":"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2001.1019008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tikhonov regularization is applied to the inversion of EEG potentials. The discrete model of the inversion problem results from an analytic technique providing information about extended intracranial distributions, with separate current source and sink positions. A three-layered concentric sphere model is used for representing head geometry. The selected regularization parameter is the minimizer of the product of the norm of the Tikhonov regularized solution and the norm of the corresponding residual. The simulations performed indicate that this regularization parameter selection method is more robust than the empirical composite residual and smoothing operator (CRESO) approach, in cases where only gaussian measurement noise exists in the discrete inverse model equation. Therefore the minimum product criterion can be used in real evoked potentials' data inversions, for the creation of brain electrical activity tomographic images, when the amount of noise present in the measured data is unknown.
使用最小积准则的吉洪诺夫正则化:在脑电断层扫描中的应用
将吉洪诺夫正则化应用于脑电图电位的反演。反演问题的离散模型来自于一种分析技术,它提供了关于扩展的颅内分布的信息,具有单独的电流源和汇位置。采用三层同心球模型表示头部几何形状。所选择的正则化参数是Tikhonov正则化解的范数与相应残差的范数之积的最小值。仿真结果表明,当离散逆模型方程中只存在高斯测量噪声时,该正则化参数选择方法比经验复合残差和平滑算子(CRESO)方法具有更强的鲁棒性。因此,当测量数据中存在的噪声量未知时,最小产品标准可用于真实诱发电位数据反演,用于创建脑电活动层析图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信