Meera Radhakrishnan, Sougata Sen, Vigneshwaran Subbaraju, Archan Misra, R. Balan
{"title":"IoT+Small Data: Transforming in-store shopping analytics & services","authors":"Meera Radhakrishnan, Sougata Sen, Vigneshwaran Subbaraju, Archan Misra, R. Balan","doi":"10.1109/COMSNETS.2016.7439946","DOIUrl":null,"url":null,"abstract":"We espouse a vision of small data-based immersive retail analytics, where a combination of sensor data, from personal wearable-devices and store-deployed sensors & IoT devices, is used to create real-time, individualized services for in-store shoppers. Key challenges include (a) appropriate joint mining of sensor & wearable data to capture a shopper's product-level interactions, and (b) judicious triggering of power-hungry wearable sensors (e.g., camera) to capture only relevant portions of a shopper's in-store activities. To explore the feasibility of our vision, we conducted experiments with 5 smartwatch-wearing users who interacted with objects placed on cupboard racks in our lab (to crudely mimic corresponding grocery store interactions). Initial results show significant promise: 94% accuracy in identifying an item-picking gesture, 85% accuracy in identifying the shelf-location from where the item was picked and 61% accuracy in identifying the exact item picked (via analysis of the smartwatch camera data).","PeriodicalId":185861,"journal":{"name":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2016.7439946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We espouse a vision of small data-based immersive retail analytics, where a combination of sensor data, from personal wearable-devices and store-deployed sensors & IoT devices, is used to create real-time, individualized services for in-store shoppers. Key challenges include (a) appropriate joint mining of sensor & wearable data to capture a shopper's product-level interactions, and (b) judicious triggering of power-hungry wearable sensors (e.g., camera) to capture only relevant portions of a shopper's in-store activities. To explore the feasibility of our vision, we conducted experiments with 5 smartwatch-wearing users who interacted with objects placed on cupboard racks in our lab (to crudely mimic corresponding grocery store interactions). Initial results show significant promise: 94% accuracy in identifying an item-picking gesture, 85% accuracy in identifying the shelf-location from where the item was picked and 61% accuracy in identifying the exact item picked (via analysis of the smartwatch camera data).