Natural block data decomposition for heterogeneous clusters

Egor Dovolnov, A. Kalinov, S. Klimov
{"title":"Natural block data decomposition for heterogeneous clusters","authors":"Egor Dovolnov, A. Kalinov, S. Klimov","doi":"10.1109/IPDPS.2003.1213209","DOIUrl":null,"url":null,"abstract":"We propose general purposes natural heuristics for static block and block-cyclic heterogeneous data decomposition over processes of parallel program mapped into multidimensional grid. This heuristics is an extension of the intuitively clear heterogeneous data distribution for one-dimensional case. It is compared to advanced heuristics for heterogeneous data decomposition proposed for solving linear algebra problems on two-dimensional process grid. We experimentally show that for typical local network (12 Windows 2000 PCs interconnected via Fast Ethernet switch) and for typical linear algebra problems these two heuristics have almost the same efficiency. We demonstrate efficiency of the proposed natural decomposition for case of three-dimensional process grid on the example of 3D modeling of supernova explosion.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We propose general purposes natural heuristics for static block and block-cyclic heterogeneous data decomposition over processes of parallel program mapped into multidimensional grid. This heuristics is an extension of the intuitively clear heterogeneous data distribution for one-dimensional case. It is compared to advanced heuristics for heterogeneous data decomposition proposed for solving linear algebra problems on two-dimensional process grid. We experimentally show that for typical local network (12 Windows 2000 PCs interconnected via Fast Ethernet switch) and for typical linear algebra problems these two heuristics have almost the same efficiency. We demonstrate efficiency of the proposed natural decomposition for case of three-dimensional process grid on the example of 3D modeling of supernova explosion.
异构集群的自然块数据分解
我们提出了一种通用的自然启发式方法,用于将静态块和块循环异构数据分解成多维网格的并行程序。这种启发式方法是对一维情况下直观清晰的异构数据分布的扩展。将其与用于求解二维过程网格上的线性代数问题的异构数据分解的高级启发式方法进行了比较。我们通过实验表明,对于典型的本地网络(12台Windows 2000计算机通过快速以太网交换机互连)和典型的线性代数问题,这两种启发式方法几乎具有相同的效率。以超新星爆炸三维建模为例,验证了该方法在三维过程网格情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信