Machine learning: hit time finding with a neural network

R. Thalmeier, H. Yin, H. Aihara, T. Aziz, S. Bacher, S. Bahinipati, E. Barberio, T. Baroncelli, T. Baroncelli, A. Basith, G. Batignani, A. Bauer, P. Behera, V. Bertacchi, S. Bettarini, B. Bhuyan, T. Bilka, F. Bosi, L. Bosisio, A. Bozek, F. Buchsteiner, G. Caria, G. Casarosa, M. Ceccanti, D. Červenkov, T. Czank, N. Dash, M. De Nuccio, Z. Doležal, F. Forti, M. Friedl, B. Gobbo, J. Grimaldo, K. Hara, T. Higuchi, C. Irmler, A. Ishikawa, H. Jeon, C. Joo, M. Kaleta, J. Kandra, N. Kambara, K. Kang, P. Kodyš, T. Kohriki, S. Koike, I. Komarov, M. Kumar, R. Kumar, W. Kun, P. Kvasnička, C. La Licata, K. Lalwani, L. Lanceri, J. Lee, S. Lee, J. Libby, T. Lueck, P. Mammini, A. Martini, S. Mayekar, G. Mohanty, T. Morii, K. Nakamura, Z. Natkaniec, Y. Onuki, W. Ostrowicz, A. Paladino, E. Paoloni, H. Park, K. Prasanth, A. Profeti, I. Rashevskaya, K. K. Rao, G. Rizzo, P. Resmi, M. Różańska, D. Sahoo, J. Sasaki, N. Sato, S. Schultschik, C. Schwanda, J. Stypuła, J. Suzuki, S. Tanaka, H. Tanigawa, G. Taylor, T. Tsuboyama, P. U
{"title":"Machine learning: hit time finding with a neural network","authors":"R. Thalmeier, H. Yin, H. Aihara, T. Aziz, S. Bacher, S. Bahinipati, E. Barberio, T. Baroncelli, T. Baroncelli, A. Basith, G. Batignani, A. Bauer, P. Behera, V. Bertacchi, S. Bettarini, B. Bhuyan, T. Bilka, F. Bosi, L. Bosisio, A. Bozek, F. Buchsteiner, G. Caria, G. Casarosa, M. Ceccanti, D. Červenkov, T. Czank, N. Dash, M. De Nuccio, Z. Doležal, F. Forti, M. Friedl, B. Gobbo, J. Grimaldo, K. Hara, T. Higuchi, C. Irmler, A. Ishikawa, H. Jeon, C. Joo, M. Kaleta, J. Kandra, N. Kambara, K. Kang, P. Kodyš, T. Kohriki, S. Koike, I. Komarov, M. Kumar, R. Kumar, W. Kun, P. Kvasnička, C. La Licata, K. Lalwani, L. Lanceri, J. Lee, S. Lee, J. Libby, T. Lueck, P. Mammini, A. Martini, S. Mayekar, G. Mohanty, T. Morii, K. Nakamura, Z. Natkaniec, Y. Onuki, W. Ostrowicz, A. Paladino, E. Paoloni, H. Park, K. Prasanth, A. Profeti, I. Rashevskaya, K. K. Rao, G. Rizzo, P. Resmi, M. Różańska, D. Sahoo, J. Sasaki, N. Sato, S. Schultschik, C. Schwanda, J. Stypuła, J. Suzuki, S. Tanaka, H. Tanigawa, G. Taylor, T. Tsuboyama, P. U","doi":"10.22323/1.343.0065","DOIUrl":null,"url":null,"abstract":"At the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, the double-sided silicon strip sub-detector of the Belle II experiment is read out by 1748 APV25 chips. FPGAs perform several calculations on the digitized signals. One of them will be \"Hit Time Finding\": the determination of the time and amplitude of the signal peaks of each event in real time using pre-programmed neural networks. This work analyses the possibility, precision and reliability of these calculations depending on various parameters.","PeriodicalId":400748,"journal":{"name":"Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.343.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, the double-sided silicon strip sub-detector of the Belle II experiment is read out by 1748 APV25 chips. FPGAs perform several calculations on the digitized signals. One of them will be "Hit Time Finding": the determination of the time and amplitude of the signal peaks of each event in real time using pre-programmed neural networks. This work analyses the possibility, precision and reliability of these calculations depending on various parameters.
机器学习:用神经网络寻找命中时间
在日本构筑波的高能加速器研究组织(KEK), Belle II实验的双面硅带子探测器由1748个APV25芯片读出。fpga对数字化信号进行一些计算。其中之一将是“命中时间查找”:使用预编程的神经网络实时确定每个事件的信号峰值的时间和幅度。本文分析了这些计算在不同参数下的可能性、精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信