Prediction of Human Whole-Body Movements with AE- ProMPs

Oriane Denny, Maxime Chaveroche, F. Colas, F. Charpillet, S. Ivaldi
{"title":"Prediction of Human Whole-Body Movements with AE- ProMPs","authors":"Oriane Denny, Maxime Chaveroche, F. Colas, F. Charpillet, S. Ivaldi","doi":"10.1109/humanoids.2018.8624986","DOIUrl":null,"url":null,"abstract":"The ability to predict the future intended movement is crucial for collaborative robots to anticipate the human actions and for assistive technologies to alert if a particular movement is non-ergonomic and potentially dangerous for the human health. In this paper, we address the problem of predicting the future human whole-body movements given early observations. We propose to predict the continuation of the high-dimensional trajectories mapped into a reduced latent space, using autoencoders (AE). The prediction is based on a probabilistic description of the movement primitives (ProMPs) in the latent space, which notably reduces the computational time for the prediction to occur, and hence enables to use the method in real-time applications. We evaluate our method, named AE-ProMPs, for predicting future movements belonging to a dataset of 7 different actions performed by a human, recorded by a wearable motion tracking suit.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/humanoids.2018.8624986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The ability to predict the future intended movement is crucial for collaborative robots to anticipate the human actions and for assistive technologies to alert if a particular movement is non-ergonomic and potentially dangerous for the human health. In this paper, we address the problem of predicting the future human whole-body movements given early observations. We propose to predict the continuation of the high-dimensional trajectories mapped into a reduced latent space, using autoencoders (AE). The prediction is based on a probabilistic description of the movement primitives (ProMPs) in the latent space, which notably reduces the computational time for the prediction to occur, and hence enables to use the method in real-time applications. We evaluate our method, named AE-ProMPs, for predicting future movements belonging to a dataset of 7 different actions performed by a human, recorded by a wearable motion tracking suit.
AE- ProMPs预测人体全身运动
预测未来预期运动的能力对于协作机器人预测人类行为和辅助技术在特定运动不符合人体工程学和对人类健康有潜在危险时发出警报至关重要。在本文中,我们解决了在早期观察的情况下预测未来人体全身运动的问题。我们建议使用自编码器(AE)来预测映射到减少潜在空间的高维轨迹的延续。该预测基于潜在空间中运动原语(promp)的概率描述,这显着减少了预测发生的计算时间,因此能够在实时应用中使用该方法。我们评估了我们的方法,名为AE-ProMPs,用于预测人类7种不同动作的数据集的未来动作,这些动作由可穿戴运动跟踪服记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信