Oriane Denny, Maxime Chaveroche, F. Colas, F. Charpillet, S. Ivaldi
{"title":"Prediction of Human Whole-Body Movements with AE- ProMPs","authors":"Oriane Denny, Maxime Chaveroche, F. Colas, F. Charpillet, S. Ivaldi","doi":"10.1109/humanoids.2018.8624986","DOIUrl":null,"url":null,"abstract":"The ability to predict the future intended movement is crucial for collaborative robots to anticipate the human actions and for assistive technologies to alert if a particular movement is non-ergonomic and potentially dangerous for the human health. In this paper, we address the problem of predicting the future human whole-body movements given early observations. We propose to predict the continuation of the high-dimensional trajectories mapped into a reduced latent space, using autoencoders (AE). The prediction is based on a probabilistic description of the movement primitives (ProMPs) in the latent space, which notably reduces the computational time for the prediction to occur, and hence enables to use the method in real-time applications. We evaluate our method, named AE-ProMPs, for predicting future movements belonging to a dataset of 7 different actions performed by a human, recorded by a wearable motion tracking suit.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/humanoids.2018.8624986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The ability to predict the future intended movement is crucial for collaborative robots to anticipate the human actions and for assistive technologies to alert if a particular movement is non-ergonomic and potentially dangerous for the human health. In this paper, we address the problem of predicting the future human whole-body movements given early observations. We propose to predict the continuation of the high-dimensional trajectories mapped into a reduced latent space, using autoencoders (AE). The prediction is based on a probabilistic description of the movement primitives (ProMPs) in the latent space, which notably reduces the computational time for the prediction to occur, and hence enables to use the method in real-time applications. We evaluate our method, named AE-ProMPs, for predicting future movements belonging to a dataset of 7 different actions performed by a human, recorded by a wearable motion tracking suit.