Approaches to time-dependent gas distribution modelling

S. Asadi, A. Lilienthal
{"title":"Approaches to time-dependent gas distribution modelling","authors":"S. Asadi, A. Lilienthal","doi":"10.1109/ECMR.2015.7324215","DOIUrl":null,"url":null,"abstract":"Mobile robot olfaction solutions for gas distribution modelling offer a number of advantages, among them au- tonomous monitoring in different environments, mobility to select sampling locations, and ability to cooperate with other systems. However, most data-driven, statistical gas distribution modelling approaches assume that the gas distribution is generated by a time-invariant random process. Such time-invariant approaches cannot model well developing plumes or fundamental changes in the gas distribution. In this paper, we discuss approaches that explicitly consider the measurement time, either by sub-sampling according to a given time-scale or by introducing a recency weight that relates measurement and prediction time. We evaluate the performance of these time-dependent approaches in simulation and in real-world experiments using mobile robots. The results demonstrate that in dynamic scenarios improved gas distribution models can be obtained with time-dependent approaches.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Mobile robot olfaction solutions for gas distribution modelling offer a number of advantages, among them au- tonomous monitoring in different environments, mobility to select sampling locations, and ability to cooperate with other systems. However, most data-driven, statistical gas distribution modelling approaches assume that the gas distribution is generated by a time-invariant random process. Such time-invariant approaches cannot model well developing plumes or fundamental changes in the gas distribution. In this paper, we discuss approaches that explicitly consider the measurement time, either by sub-sampling according to a given time-scale or by introducing a recency weight that relates measurement and prediction time. We evaluate the performance of these time-dependent approaches in simulation and in real-world experiments using mobile robots. The results demonstrate that in dynamic scenarios improved gas distribution models can be obtained with time-dependent approaches.
随时间变化的气体分布建模方法
用于气体分布建模的移动机器人嗅觉解决方案提供了许多优势,其中包括在不同环境下的自主监测,选择采样位置的移动性以及与其他系统合作的能力。然而,大多数数据驱动的统计气体分布建模方法假设气体分布是由时不变随机过程产生的。这种时不变方法不能很好地模拟正在发展的羽流或气体分布的基本变化。在本文中,我们讨论了明确考虑测量时间的方法,或者根据给定的时间尺度进行子抽样,或者通过引入与测量时间和预测时间相关的最近权值。我们在模拟和使用移动机器人的真实世界实验中评估了这些时间相关方法的性能。结果表明,在动态情况下,采用时间相关方法可以得到改进的气体分布模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信