Empirical Likelihood Estimation of Value-at-Risk and Expected Shortfall With Moment Constraints

O. Linton, Xiaolu Zhao
{"title":"Empirical Likelihood Estimation of Value-at-Risk and Expected Shortfall With Moment Constraints","authors":"O. Linton, Xiaolu Zhao","doi":"10.2139/ssrn.3752243","DOIUrl":null,"url":null,"abstract":"This paper proposes efficient estimation of risk measures by fully exploring the first and second moment information in a GARCH framework. We propose a quantile estimator based on inverting an empirical likelihood weighted distribution estimator. It is found that the new quantile estimator is uniformly more efficient than the simple empirical quantile and a quantile estimator based on normalized residuals. We show that the same conclusion applies to the estimation of conditional Expected Shortfall. We find that these proposed estimators for conditional Value-at-Risk and expected shortfall are asymptotically mixed normal. Simulation evidence provided.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3752243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes efficient estimation of risk measures by fully exploring the first and second moment information in a GARCH framework. We propose a quantile estimator based on inverting an empirical likelihood weighted distribution estimator. It is found that the new quantile estimator is uniformly more efficient than the simple empirical quantile and a quantile estimator based on normalized residuals. We show that the same conclusion applies to the estimation of conditional Expected Shortfall. We find that these proposed estimators for conditional Value-at-Risk and expected shortfall are asymptotically mixed normal. Simulation evidence provided.
矩约束下风险价值和预期不足的经验似然估计
本文通过充分挖掘GARCH框架中的一阶矩和二阶矩信息,提出了一种有效的风险测度估计方法。提出了一种基于经验似然加权分布估计量反演的分位数估计量。结果表明,新的分位数估计器比简单的经验分位数估计器和基于归一化残差的分位数估计器都更有效。我们证明了同样的结论也适用于条件期望缺口的估计。我们发现这些条件风险值和期望缺口的估计量是渐近混合正态的。提供模拟证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信