A Wearable Electrocardiogram Monitoring System Robust to Motion Artifacts

Tae-Min Seol, Sehwan Lee, Junghyup Lee
{"title":"A Wearable Electrocardiogram Monitoring System Robust to Motion Artifacts","authors":"Tae-Min Seol, Sehwan Lee, Junghyup Lee","doi":"10.1109/ISOCC.2018.8649897","DOIUrl":null,"url":null,"abstract":"This study proposes a wearable system that can measure electrocardiogram (ECG) signals reliably in an environment with high motion induced noise. This system employs a motion artifact extraction method based on a triple-axis accelerometer attached to each electrode independently to remove motion artifact from ECG signals with high performance. Recursive Least Square (RLS) and Least Mean Square (LMS) algorithms remove extracted noise from the source signals, thereby obtaining a mean square error (MSE) of 0.0166 when using RLS and 0.0160 when using LMS. This means that the performance improved respectively by approximately 5.1% and 8.6% compared to that of the recently developed ECG monitoring system.","PeriodicalId":127156,"journal":{"name":"2018 International SoC Design Conference (ISOCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2018.8649897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study proposes a wearable system that can measure electrocardiogram (ECG) signals reliably in an environment with high motion induced noise. This system employs a motion artifact extraction method based on a triple-axis accelerometer attached to each electrode independently to remove motion artifact from ECG signals with high performance. Recursive Least Square (RLS) and Least Mean Square (LMS) algorithms remove extracted noise from the source signals, thereby obtaining a mean square error (MSE) of 0.0166 when using RLS and 0.0160 when using LMS. This means that the performance improved respectively by approximately 5.1% and 8.6% compared to that of the recently developed ECG monitoring system.
一种抗运动伪影的穿戴式心电图监测系统
本研究提出一种可穿戴系统,可以在高运动噪声环境中可靠地测量心电图(ECG)信号。该系统采用了一种基于三轴加速度计的运动伪影提取方法,将运动伪影从心电信号中高效地去除。递推最小二乘(RLS)和最小均方(LMS)算法将提取的噪声从源信号中去除,得到的均方误差(MSE)分别为:RLS和LMS分别为0.0166和0.0160。这意味着与最近开发的心电监测系统相比,性能分别提高了约5.1%和8.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信