Koushik Chakraborty, Brennan Cozzens, Sanghamitra Roy, D. Ancajas
{"title":"Efficiently tolerating timing violations in pipelined microprocessors","authors":"Koushik Chakraborty, Brennan Cozzens, Sanghamitra Roy, D. Ancajas","doi":"10.1145/2463209.2488860","DOIUrl":null,"url":null,"abstract":"Early prediction of an upcoming timing violation presents a tremendous opportunity to mask the performance overhead of tolerating these faults. In this paper, we explore several techniques for optimizing instruction scheduling in an Out-of-Order pipeline, exploiting this new perspective in robust system design. Compared to recently proposed stall based techniques for tolerating predictable timing violations, we demonstrate a massive reduction in performance overhead, while supporting correct execution in faulty environments (64-97% across different benchmarks).","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Early prediction of an upcoming timing violation presents a tremendous opportunity to mask the performance overhead of tolerating these faults. In this paper, we explore several techniques for optimizing instruction scheduling in an Out-of-Order pipeline, exploiting this new perspective in robust system design. Compared to recently proposed stall based techniques for tolerating predictable timing violations, we demonstrate a massive reduction in performance overhead, while supporting correct execution in faulty environments (64-97% across different benchmarks).