A. Shaw, T. J. Whittles, I. Mitrovic, J. Jin, J. S. Wrench, D. Hesp, V. Dhanak, P. Chalker, S. Hall
{"title":"Physical and electrical characterization of Mg-doped ZnO thin-film transistors","authors":"A. Shaw, T. J. Whittles, I. Mitrovic, J. Jin, J. S. Wrench, D. Hesp, V. Dhanak, P. Chalker, S. Hall","doi":"10.1109/ESSDERC.2015.7324751","DOIUrl":null,"url":null,"abstract":"The effect of Mg-doping on the valence and conduction bands of ZnO grown at 200 °C using atomic layer deposition has been investigated using a range of physical characterization techniques: X-ray photoemission spectroscopy, inverse photoemission spectroscopy and spectrocopic ellipsometry. The conduction band minimum is seen to increase with Mg content hence confirming the increased band gap. The physical characterization has been linked with modeling of thin-film transistor structures whereby a defect state based model has been employed to explain the transport mechanisms within the film.","PeriodicalId":332857,"journal":{"name":"2015 45th European Solid State Device Research Conference (ESSDERC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 45th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2015.7324751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The effect of Mg-doping on the valence and conduction bands of ZnO grown at 200 °C using atomic layer deposition has been investigated using a range of physical characterization techniques: X-ray photoemission spectroscopy, inverse photoemission spectroscopy and spectrocopic ellipsometry. The conduction band minimum is seen to increase with Mg content hence confirming the increased band gap. The physical characterization has been linked with modeling of thin-film transistor structures whereby a defect state based model has been employed to explain the transport mechanisms within the film.