Multi-dimensional Attention Spiking Transformer for Event-based Image Classification

Lin Li, Yang Liu
{"title":"Multi-dimensional Attention Spiking Transformer for Event-based Image Classification","authors":"Lin Li, Yang Liu","doi":"10.1109/CISCE58541.2023.10142563","DOIUrl":null,"url":null,"abstract":"Image classification is a vital research area in deep learning. However, the use of Artificial Neural Networks (ANNs) in conventional approaches requires vast computational power and memory. As a potential energy-efficient alternative, Spiking Neural Networks (SNNs) leverage temporal information and low-power sensors. Nonetheless, extracting spatio-temporal features from event-based image sequences for improved classification accuracies in SNNs poses a significant challenge. To address this, we propose a Multi-Dimensional Attention Spiking Transformer (MAST) model that integrates attention mechanisms and SNNs to capture spatio-temporal features in event-based image sequences. Consequently, the MAST model achieves state-of-the-art performance in various classification tasks, as shown by the evaluations on the CIFAR, DVS128 Gesture, and CIFAR10-DVS datasets. Overall, MAST exhibits promise in event-based image classification tasks, providing a new perspective on the integration of attention mechanisms and SNNs for improved image classification.","PeriodicalId":145263,"journal":{"name":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE58541.2023.10142563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image classification is a vital research area in deep learning. However, the use of Artificial Neural Networks (ANNs) in conventional approaches requires vast computational power and memory. As a potential energy-efficient alternative, Spiking Neural Networks (SNNs) leverage temporal information and low-power sensors. Nonetheless, extracting spatio-temporal features from event-based image sequences for improved classification accuracies in SNNs poses a significant challenge. To address this, we propose a Multi-Dimensional Attention Spiking Transformer (MAST) model that integrates attention mechanisms and SNNs to capture spatio-temporal features in event-based image sequences. Consequently, the MAST model achieves state-of-the-art performance in various classification tasks, as shown by the evaluations on the CIFAR, DVS128 Gesture, and CIFAR10-DVS datasets. Overall, MAST exhibits promise in event-based image classification tasks, providing a new perspective on the integration of attention mechanisms and SNNs for improved image classification.
基于事件的图像分类的多维注意力峰值转换器
图像分类是深度学习的一个重要研究领域。然而,在传统方法中使用人工神经网络(ann)需要巨大的计算能力和内存。作为潜在的节能替代方案,脉冲神经网络(snn)利用了时间信息和低功耗传感器。然而,从基于事件的图像序列中提取时空特征以提高snn的分类精度是一个重大挑战。为了解决这个问题,我们提出了一个多维注意峰值转换器(MAST)模型,该模型集成了注意机制和snn,以捕获基于事件的图像序列中的时空特征。因此,MAST模型在各种分类任务中实现了最先进的性能,如对CIFAR、DVS128 Gesture和CIFAR10-DVS数据集的评估所示。总体而言,MAST在基于事件的图像分类任务中表现出前景,为注意力机制和snn的整合提供了一个新的视角,以改进图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信