Rare event simulation for rough energy landscapes

P. Dupuis, K. Spiliopoulos, Hui Wang
{"title":"Rare event simulation for rough energy landscapes","authors":"P. Dupuis, K. Spiliopoulos, Hui Wang","doi":"10.1109/WSC.2011.6147780","DOIUrl":null,"url":null,"abstract":"A rough energy landscape can be modeled by a potential function superimposed by another fast oscillating function. Modeling motion in such a rough energy landscape by a small noise stochastic differential equation with fast oscillating coefficients, we construct asymptotically optimal importance sampling schemes for the study of rare events. Standard Monte Carlo methods perform poorly for these kind of problems in the small noise limit, even without the added difficulties of the fast oscillating function. We study the situation in which the fast oscillating parameter goes to zero faster than the intensity of the noise. We identify an asymptotically optimal estimator in the sense of variance minimization using the subsolution approach. Examples and simulation results are provided.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6147780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

A rough energy landscape can be modeled by a potential function superimposed by another fast oscillating function. Modeling motion in such a rough energy landscape by a small noise stochastic differential equation with fast oscillating coefficients, we construct asymptotically optimal importance sampling schemes for the study of rare events. Standard Monte Carlo methods perform poorly for these kind of problems in the small noise limit, even without the added difficulties of the fast oscillating function. We study the situation in which the fast oscillating parameter goes to zero faster than the intensity of the noise. We identify an asymptotically optimal estimator in the sense of variance minimization using the subsolution approach. Examples and simulation results are provided.
粗糙能源景观的罕见事件模拟
粗略的能量格局可以用一个势函数与另一个快速振荡函数的叠加来建模。利用一个具有快速振荡系数的小噪声随机微分方程对这种粗糙能量景观中的运动进行建模,我们构造了用于研究罕见事件的渐近最优重要抽样方案。标准蒙特卡罗方法在小噪声范围内对这类问题表现不佳,即使没有快速振荡函数的附加困难。研究了快振荡参数趋近于零的速度快于噪声强度的情况。我们用子解方法在方差最小的意义上确定了一个渐近最优估计量。给出了算例和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信