CRF-driven multi-compartment geometric model

Sepehr Farhand, F. Andreopoulos, G. Tsechpenakis
{"title":"CRF-driven multi-compartment geometric model","authors":"Sepehr Farhand, F. Andreopoulos, G. Tsechpenakis","doi":"10.1109/ISBI.2013.6556669","DOIUrl":null,"url":null,"abstract":"We present a hybrid framework for segmenting structures consisting of distinct inter-connected parts. We combine the robustness of Conditional Random Fields in appearance classification with the shape constraints of geometric models and the relative part topology constraints that multi-compartment modeling provides. We demonstrate the performance of our method in cell segmentation from fluorescent microscopic images, where the compartments of interest are the cell nucleus, cytoplasm, and the negative hypothesis (background). We compare our results with the most relevant model- and appearance-based segmentation methods.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a hybrid framework for segmenting structures consisting of distinct inter-connected parts. We combine the robustness of Conditional Random Fields in appearance classification with the shape constraints of geometric models and the relative part topology constraints that multi-compartment modeling provides. We demonstrate the performance of our method in cell segmentation from fluorescent microscopic images, where the compartments of interest are the cell nucleus, cytoplasm, and the negative hypothesis (background). We compare our results with the most relevant model- and appearance-based segmentation methods.
crf驱动多隔室几何模型
我们提出了一种混合框架,用于分割由不同互连部分组成的结构。我们将条件随机场在外观分类中的鲁棒性与几何模型的形状约束和多室建模提供的相关部件拓扑约束相结合。我们从荧光显微图像中展示了我们的方法在细胞分割中的性能,其中感兴趣的隔室是细胞核,细胞质和阴性假设(背景)。我们将我们的结果与最相关的基于模型和基于外观的分割方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信