Lithographic Simulator Based on Deep Learning with Graph Input

Peng Xu, Pengpeng Yuan, Yayi Wei
{"title":"Lithographic Simulator Based on Deep Learning with Graph Input","authors":"Peng Xu, Pengpeng Yuan, Yayi Wei","doi":"10.1109/CSTIC52283.2021.9461424","DOIUrl":null,"url":null,"abstract":"This paper discuss a simple deep neural network which aimed to finish the simulation of the lithographic process. It can be finalized by a more comprehensive model formed by combined networks each for different parts of lithographic process. The advantage of the DNN is that it uses a graph input as the representation of the layout. As a result it can be easily combined with the current industrial software. Furthermore, this DNN can be applied reversely to generate a regularized pattern from data of current commercial ILT package. It will at least improve the manufacturability of ILT results generated by the current commercial package.","PeriodicalId":186529,"journal":{"name":"2021 China Semiconductor Technology International Conference (CSTIC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC52283.2021.9461424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discuss a simple deep neural network which aimed to finish the simulation of the lithographic process. It can be finalized by a more comprehensive model formed by combined networks each for different parts of lithographic process. The advantage of the DNN is that it uses a graph input as the representation of the layout. As a result it can be easily combined with the current industrial software. Furthermore, this DNN can be applied reversely to generate a regularized pattern from data of current commercial ILT package. It will at least improve the manufacturability of ILT results generated by the current commercial package.
基于图形输入深度学习的光刻模拟器
本文讨论了一种简单的深度神经网络来完成光刻过程的仿真。它可以通过一个更全面的模型来确定,该模型由光刻过程中不同部分的每个网络组合而成。深度神经网络的优势在于它使用图形输入作为布局的表示。因此,它可以很容易地与当前的工业软件相结合。此外,该深度神经网络可以反向应用于从当前商用ILT封装的数据生成正则化模式。它至少将提高当前商用封装产生的ILT结果的可制造性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信