Intelligent Neural Sliding Control for Planetary Gear Type Inverted Pendulum Mechanism

Y. Huang, C. Hsu, T. Kuo, Jonqlan Lin
{"title":"Intelligent Neural Sliding Control for Planetary Gear Type Inverted Pendulum Mechanism","authors":"Y. Huang, C. Hsu, T. Kuo, Jonqlan Lin","doi":"10.1109/ISIC.2007.4450935","DOIUrl":null,"url":null,"abstract":"An intelligent neural sliding controller is developed for planetary train type inverted pendulum mechanism. The control methodology is based on the sliding mode control. The switching function in the normal control law is replaced with a bipolar sigmoid function. A fuzzy neural network is used to identify the pendulum dynamics. Adaptive tuning law is derived. The bipolar sigmoid function is thus adjusted according to the result of the identification process.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An intelligent neural sliding controller is developed for planetary train type inverted pendulum mechanism. The control methodology is based on the sliding mode control. The switching function in the normal control law is replaced with a bipolar sigmoid function. A fuzzy neural network is used to identify the pendulum dynamics. Adaptive tuning law is derived. The bipolar sigmoid function is thus adjusted according to the result of the identification process.
行星齿轮式倒立摆机构的智能神经滑动控制
针对行星列式倒立摆机构,设计了一种智能神经滑动控制器。控制方法是基于滑模控制。将正常控制律中的开关函数替换为双极s型函数。采用模糊神经网络对摆动力学进行辨识。推导了自适应调谐律。因此,根据识别过程的结果调整双极s型函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信