{"title":"Multiscale Simulation: Can Compact Models be More Than a One-Way Bridge Between TCAD and Circuit Simulation?","authors":"A. Kloes","doi":"10.1109/LAEDC51812.2021.9437941","DOIUrl":null,"url":null,"abstract":"Today, for electrical simulation on different levels of abstraction there are mainly two simulation frameworks: TCAD enables the simulation of individual devices closely to device physics, possibly including quantum effects. Circuit simulators such as SPICE use compact models to represent individual devices in the simulation of a circuit with numerous transistors. For the very time consuming interaction of both environments in the sense of Design-Technology Co-Optimization (DTCO), compact models are used as one-way bridges: The parameters of a compact model are adapted to TCAD results and serve as input to a circuit simulation, followed by a feedback of circuit performance on the definition of the device structure. But can compact models serve as a bidirectional bridge between circuit and TCAD simulation? Is it possible and advantageous to integrate compact models in TCAD simulations to build a joined platform that enables a multiscale simulation from quantum physics to circuit simulation? In this paper, an example for the successful integration of a compact model into the numerical device simulation of an ultra-short channel double-gate MOSFET is discussed.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC51812.2021.9437941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Today, for electrical simulation on different levels of abstraction there are mainly two simulation frameworks: TCAD enables the simulation of individual devices closely to device physics, possibly including quantum effects. Circuit simulators such as SPICE use compact models to represent individual devices in the simulation of a circuit with numerous transistors. For the very time consuming interaction of both environments in the sense of Design-Technology Co-Optimization (DTCO), compact models are used as one-way bridges: The parameters of a compact model are adapted to TCAD results and serve as input to a circuit simulation, followed by a feedback of circuit performance on the definition of the device structure. But can compact models serve as a bidirectional bridge between circuit and TCAD simulation? Is it possible and advantageous to integrate compact models in TCAD simulations to build a joined platform that enables a multiscale simulation from quantum physics to circuit simulation? In this paper, an example for the successful integration of a compact model into the numerical device simulation of an ultra-short channel double-gate MOSFET is discussed.