A Network Traffic Prediction Model Based on Quantum Inspired PSO and Neural Network

Kun Zhang, L. Liang, Ying Huang
{"title":"A Network Traffic Prediction Model Based on Quantum Inspired PSO and Neural Network","authors":"Kun Zhang, L. Liang, Ying Huang","doi":"10.1109/ISCID.2013.168","DOIUrl":null,"url":null,"abstract":"The network traffic prediction model is the foundation of network performance analysis and designing. Aiming at limitation of the conventional network traffic time series prediction model and the problem that BP algorithms easily plunge into local solution, an optimization algorithm-PSO-QI which combine particle swarm optimization (PSO) and the quantum principle is proposed, and can alleviate the premature convergence validly. Then, the parameters of BP neural network were optimized and the time series of network traffic data was modeled and forecasted based on BP neural network and PSO-QI. Experiments showed that PSOQI-BP neural network has better precision and adaptability compared with the traditional neural network.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The network traffic prediction model is the foundation of network performance analysis and designing. Aiming at limitation of the conventional network traffic time series prediction model and the problem that BP algorithms easily plunge into local solution, an optimization algorithm-PSO-QI which combine particle swarm optimization (PSO) and the quantum principle is proposed, and can alleviate the premature convergence validly. Then, the parameters of BP neural network were optimized and the time series of network traffic data was modeled and forecasted based on BP neural network and PSO-QI. Experiments showed that PSOQI-BP neural network has better precision and adaptability compared with the traditional neural network.
基于量子启发粒子群和神经网络的网络流量预测模型
网络流量预测模型是网络性能分析和设计的基础。针对传统网络流量时间序列预测模型的局限性和BP算法容易陷入局部解的问题,提出了一种结合粒子群算法(PSO)和量子原理的优化算法PSO- qi,有效地缓解了网络流量时间序列预测模型的过早收敛。然后,对BP神经网络参数进行优化,并基于BP神经网络和PSO-QI对网络流量数据的时间序列进行建模和预测。实验表明,与传统神经网络相比,PSOQI-BP神经网络具有更好的精度和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信