Numerical Simulations of Shear Stress in Microfluidic Channel Models

Rebeka Kovács, Alexandra Borók, A. Bonyár
{"title":"Numerical Simulations of Shear Stress in Microfluidic Channel Models","authors":"Rebeka Kovács, Alexandra Borók, A. Bonyár","doi":"10.1109/ISSE54558.2022.9812787","DOIUrl":null,"url":null,"abstract":"Von Willebrand factor (vWF) is the largest glycoprotein in blood, which plays a major role in primary haemostasis via its interaction with endothelial cell surface receptors and platelets. Altered shear stress value can cause conformational unfolding of vWF, which leads to the activation of the factor. The primary aim of this work is to study the effect of shear stress on the activation of vWF with the designed microfluidic chambers. Numerical simulations were performed on different three-dimensional microfluidic system models, including two input channels converging and forming a single output. In this work, the flow field, the occurring shear stress, and velocity between the two fluids with different densities and dynamic viscosities were investigated. The numerical simulations are necessary to understand the flow field and the shear stress, which affect the factor.","PeriodicalId":413385,"journal":{"name":"2022 45th International Spring Seminar on Electronics Technology (ISSE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 45th International Spring Seminar on Electronics Technology (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE54558.2022.9812787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Von Willebrand factor (vWF) is the largest glycoprotein in blood, which plays a major role in primary haemostasis via its interaction with endothelial cell surface receptors and platelets. Altered shear stress value can cause conformational unfolding of vWF, which leads to the activation of the factor. The primary aim of this work is to study the effect of shear stress on the activation of vWF with the designed microfluidic chambers. Numerical simulations were performed on different three-dimensional microfluidic system models, including two input channels converging and forming a single output. In this work, the flow field, the occurring shear stress, and velocity between the two fluids with different densities and dynamic viscosities were investigated. The numerical simulations are necessary to understand the flow field and the shear stress, which affect the factor.
微流体通道模型中剪切应力的数值模拟
血管性血友病因子(vWF)是血液中最大的糖蛋白,它通过与内皮细胞表面受体和血小板的相互作用在原发性止血中起主要作用。剪切应力值的改变会引起vWF的构象展开,从而导致该因子的激活。本工作的主要目的是在设计的微流控室中研究剪切应力对vWF活化的影响。在不同的三维微流体系统模型上进行了数值模拟,包括两个输入通道收敛并形成一个单一的输出。本文研究了两种不同密度和动态黏度流体的流场、发生的剪应力和速度。数值模拟是了解流场和剪切应力影响因素的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信