Implementing the Best Processor Cores

V. Boppana, R. Varma, S. Balajee
{"title":"Implementing the Best Processor Cores","authors":"V. Boppana, R. Varma, S. Balajee","doi":"10.1109/VLSI.2008.137","DOIUrl":null,"url":null,"abstract":"Summary form only given. It is well-known that varying architectural, technological and implementation aspects of embedded microprocessors, such as ARM, can produce widely differing performance and power specifications. Frequency specifications of high-end realizations are often nearly 2x-3x over vanilla flows. Power optimization techniques used in high-end processor designs have also been reported to have the potential to produce 3x-10x improvements in power over standard flows. This tutorial reviews high-end processor design challenges, techniques and presents state-of-the-art flows for implementing embedded processors. These techniques include processor and architecture selection, verification, selection of technology node/process, selection of macros, selection and optimization of standard cell libraries, design/architecture and power planning, advanced timing and power optimization, design closure, design integration, variability-tolerance, and design-for-manufacturability. The tutorial arms the audience with the best techniques, tools and methodologies to select and achieve the best Silicon for state-of-the-art embedded processors.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. It is well-known that varying architectural, technological and implementation aspects of embedded microprocessors, such as ARM, can produce widely differing performance and power specifications. Frequency specifications of high-end realizations are often nearly 2x-3x over vanilla flows. Power optimization techniques used in high-end processor designs have also been reported to have the potential to produce 3x-10x improvements in power over standard flows. This tutorial reviews high-end processor design challenges, techniques and presents state-of-the-art flows for implementing embedded processors. These techniques include processor and architecture selection, verification, selection of technology node/process, selection of macros, selection and optimization of standard cell libraries, design/architecture and power planning, advanced timing and power optimization, design closure, design integration, variability-tolerance, and design-for-manufacturability. The tutorial arms the audience with the best techniques, tools and methodologies to select and achieve the best Silicon for state-of-the-art embedded processors.
实现最好的处理器核心
只提供摘要形式。众所周知,嵌入式微处理器(如ARM)的不同架构、技术和实现方面会产生很大差异的性能和功率规格。高端实现的频率规格通常是普通流程的2 -3倍。据报道,高端处理器设计中使用的功耗优化技术也有可能使功耗比标准流提高3 -10倍。本教程回顾了高端处理器的设计挑战、技术,并介绍了实现嵌入式处理器的最新流程。这些技术包括处理器和架构的选择、验证、技术节点/工艺的选择、宏的选择、标准单元库的选择和优化、设计/架构和电源规划、高级时序和电源优化、设计闭合、设计集成、可变性容忍和可制造性设计。本教程为读者提供了最好的技术、工具和方法,以选择和实现最先进的嵌入式处理器的最佳硅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信