{"title":"Translational Control Through the EIF4E Binding Proteins in the Brain","authors":"A. Aguilar-Valles, E. Matta-Camacho, N. Sonenberg","doi":"10.1093/OXFORDHB/9780190686307.013.5","DOIUrl":null,"url":null,"abstract":"Translation of messenger RNA (mRNA) into protein (protein synthesis) is a highly regulated process that controls gene expression. Various signaling pathways, including the mammalian target of rapamycin (mTOR), control mRNA translation at the initiation step. mTOR is part of a multi-subunit complex that regulates mRNA translation initiation by phosphorylating and inactivating the eukaryotic initiation factor 4E binding proteins (4E-BPs). 4E-BPs are a central mechanism in the control of cap-dependent translation in the brain. This chapter reviews the involvement of the 4E-BPs, particularly 4E-BP2, in brain development and synaptic transmission. Furthermore, it discusses the involvement of 4E-BP2 in autistic-like alterations, learning and memory, circadian rhythm regulation, and its roles in the pathophysiology and treatment of psychiatric (depressive disorders, schizophrenia) and neurodegenerative disorders (Parkinson’s).","PeriodicalId":234037,"journal":{"name":"The Oxford Handbook of Neuronal Protein Synthesis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Oxford Handbook of Neuronal Protein Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFORDHB/9780190686307.013.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Translation of messenger RNA (mRNA) into protein (protein synthesis) is a highly regulated process that controls gene expression. Various signaling pathways, including the mammalian target of rapamycin (mTOR), control mRNA translation at the initiation step. mTOR is part of a multi-subunit complex that regulates mRNA translation initiation by phosphorylating and inactivating the eukaryotic initiation factor 4E binding proteins (4E-BPs). 4E-BPs are a central mechanism in the control of cap-dependent translation in the brain. This chapter reviews the involvement of the 4E-BPs, particularly 4E-BP2, in brain development and synaptic transmission. Furthermore, it discusses the involvement of 4E-BP2 in autistic-like alterations, learning and memory, circadian rhythm regulation, and its roles in the pathophysiology and treatment of psychiatric (depressive disorders, schizophrenia) and neurodegenerative disorders (Parkinson’s).