Optimizing the energy efficient VM placement by IEFWA and hybrid IEFWA/BBO algorithms

H. M. Ali, D. Lee
{"title":"Optimizing the energy efficient VM placement by IEFWA and hybrid IEFWA/BBO algorithms","authors":"H. M. Ali, D. Lee","doi":"10.1109/SPECTS.2016.7570511","DOIUrl":null,"url":null,"abstract":"In this paper, we present a problem-specific, information-based enhanced fireworks algorithm (IEFWA) and a hybrid of the IEFWA and the Biogeography-based optimization (BBO) algorithm. These new algorithms are tested for virtual machine (VM) placement problem with the objective of minimizing the energy consumption in datacenters, which is an integer space optimization problem. The EFWA algorithm is a relatively recent development in swarm intelligence (SI), and is based on explosion amplitude operator that operates in the continuous space. The 'round' function is used to convert the explosion amplitude value to the nearest integer to operate in integer space. In our IEFWA algorithm design, some domain knowledge of VM placement problem was used. During the spark generation in IEFWA, the explosion amplitude is added to the information-based selected components of the fireworks instead of adding the explosion amplitude into instead of all components. The hybrid IEFWA/BBO algorithm probabilistically chooses the explosion amplitude operator of IEFWA algorithm or the migration operator of BBO algorithm with a user determined probability for the exploitation of good candidate solutions. The VM placement problem is NP-hard, and existing results demonstrate that evolutionary algorithms (EAs) can be useful choice for good-quality solution with reasonable computing resources. We experimentally compare the performance of BBO, EFWA, IEFWA, hybrid IEFWA/BBO and the first fit decreasing (FFD) algorithms. Simulation results demonstrate the two key findings of this study. First, IEFWA algorithm consumes less CPU time as compared to the EFWA algorithm. Second, IEFWA and hybrid IEFWA/BBO algorithms outperform EFWA and BBO algorithms in terms of average energy consumed in datacenters.","PeriodicalId":302558,"journal":{"name":"2016 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECTS.2016.7570511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a problem-specific, information-based enhanced fireworks algorithm (IEFWA) and a hybrid of the IEFWA and the Biogeography-based optimization (BBO) algorithm. These new algorithms are tested for virtual machine (VM) placement problem with the objective of minimizing the energy consumption in datacenters, which is an integer space optimization problem. The EFWA algorithm is a relatively recent development in swarm intelligence (SI), and is based on explosion amplitude operator that operates in the continuous space. The 'round' function is used to convert the explosion amplitude value to the nearest integer to operate in integer space. In our IEFWA algorithm design, some domain knowledge of VM placement problem was used. During the spark generation in IEFWA, the explosion amplitude is added to the information-based selected components of the fireworks instead of adding the explosion amplitude into instead of all components. The hybrid IEFWA/BBO algorithm probabilistically chooses the explosion amplitude operator of IEFWA algorithm or the migration operator of BBO algorithm with a user determined probability for the exploitation of good candidate solutions. The VM placement problem is NP-hard, and existing results demonstrate that evolutionary algorithms (EAs) can be useful choice for good-quality solution with reasonable computing resources. We experimentally compare the performance of BBO, EFWA, IEFWA, hybrid IEFWA/BBO and the first fit decreasing (FFD) algorithms. Simulation results demonstrate the two key findings of this study. First, IEFWA algorithm consumes less CPU time as compared to the EFWA algorithm. Second, IEFWA and hybrid IEFWA/BBO algorithms outperform EFWA and BBO algorithms in terms of average energy consumed in datacenters.
利用IEFWA和IEFWA/BBO混合算法优化节能虚拟机布局
在本文中,我们提出了一种针对特定问题的、基于信息的增强烟花算法(IEFWA)以及IEFWA和基于生物地理的优化(BBO)算法的混合算法。针对以最小化数据中心能耗为目标的整数空间优化问题,对这些新算法进行了测试。EFWA算法是一种基于连续空间爆炸振幅算子的群体智能(SI)算法。“round”函数用于将爆炸振幅值转换为最接近的整数,以便在整数空间中进行操作。在我们的IEFWA算法设计中,使用了虚拟机放置问题的一些领域知识。在IEFWA的火花产生过程中,爆炸振幅是叠加到烟花的信息化选择成分中,而不是叠加到所有成分中。IEFWA/BBO混合算法以用户确定的概率概率选择IEFWA算法的爆炸幅度算子或BBO算法的迁移算子,以开发好的候选解。虚拟机放置问题是np困难问题,现有的结果表明,进化算法(EAs)可以在合理的计算资源下获得高质量的解决方案。实验比较了BBO、EFWA、IEFWA、IEFWA/BBO混合算法和首次拟合递减算法(FFD)的性能。仿真结果证明了本研究的两个关键发现。首先,IEFWA算法比EFWA算法消耗更少的CPU时间。其次,IEFWA和混合IEFWA/BBO算法在数据中心的平均能耗方面优于EFWA和BBO算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信