Isogeometric analysis for electromagnetic scattering problems

A. Buffa, R. Vázquez
{"title":"Isogeometric analysis for electromagnetic scattering problems","authors":"A. Buffa, R. Vázquez","doi":"10.1109/NEMO.2014.6995712","DOIUrl":null,"url":null,"abstract":"This paper is about the solution of electromagnetic scattering, when the scatterer is a conductor. The related equations are of integro-differential type and their fast discretization is a real challenge in numerical analysis. These equations depend on the frequency, and they lack stability at both high and low frequencies: any good numerical method has to cope with these instabilities. We will introduce suitable approximation techniques based on splines, see [1], and discuss how this could be used to improve on the state of the art in electromagnetic scattering problems. In particular, we will show how the use of splines allows to establish efficient Calderón-based preconditioners for high order discretizations.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper is about the solution of electromagnetic scattering, when the scatterer is a conductor. The related equations are of integro-differential type and their fast discretization is a real challenge in numerical analysis. These equations depend on the frequency, and they lack stability at both high and low frequencies: any good numerical method has to cope with these instabilities. We will introduce suitable approximation techniques based on splines, see [1], and discuss how this could be used to improve on the state of the art in electromagnetic scattering problems. In particular, we will show how the use of splines allows to establish efficient Calderón-based preconditioners for high order discretizations.
电磁散射问题的等几何分析
本文研究了当散射体为导体时的电磁散射问题的求解。相关方程为积分-微分型,其快速离散化是数值分析中的一个难题。这些方程取决于频率,它们在高频和低频都缺乏稳定性:任何好的数值方法都必须处理这些不稳定性。我们将介绍合适的基于样条的近似技术,参见[1],并讨论如何使用它来改进电磁散射问题的最新技术。特别是,我们将展示如何使用样条来建立高效的Calderón-based预调节器,用于高阶离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信