{"title":"Free Vibrations of Composite Shallow Circular Cylindrical Shell Panels With a Bonded Central Stiffening Shell Strip","authors":"U. Yuceoglu, V. Özerciyes","doi":"10.1115/imece2001/ad-23757","DOIUrl":null,"url":null,"abstract":"\n This study is concerned with the “Free Vibrations of Composite Shallow Circular Cylindrical Shells or Shell Panels with a Central Stiffening Shell Strip”. The upper and lower shell elements of the stiffened composite system are considered as dissimilar, orthotropic shallow shells. The upper relatively narrow stiffening shell strip is centrally located and adhesively bonded to the lower main shell element In the theoretical formulation, a “First Order Shear Deformation Shell Theory (FSDST)” is employed. The complete set of the shallow shell dynamic equations (including the stress resultant-displacement and the constitutive equations) and the equations of the thin flexible, adhesive layer are first reduced to a set of first order system of ordinary differential equations. This final set forms the governing equations of the problem. Then, they are integrated by means of the “Modified Transfer Matrix Method”. In the adhesive layer, the “hard” and the “soft” adhesive effects are considered. It was found that the material characteristics of the adhesive layer influence the mode shapes and the corresponding natural frequencies of the composite shallow shell panel system. Additionally, some parametric studies on the natural frequencies are presented.","PeriodicalId":136170,"journal":{"name":"Contemporary Research in Engineering Mechanics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Research in Engineering Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/ad-23757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study is concerned with the “Free Vibrations of Composite Shallow Circular Cylindrical Shells or Shell Panels with a Central Stiffening Shell Strip”. The upper and lower shell elements of the stiffened composite system are considered as dissimilar, orthotropic shallow shells. The upper relatively narrow stiffening shell strip is centrally located and adhesively bonded to the lower main shell element In the theoretical formulation, a “First Order Shear Deformation Shell Theory (FSDST)” is employed. The complete set of the shallow shell dynamic equations (including the stress resultant-displacement and the constitutive equations) and the equations of the thin flexible, adhesive layer are first reduced to a set of first order system of ordinary differential equations. This final set forms the governing equations of the problem. Then, they are integrated by means of the “Modified Transfer Matrix Method”. In the adhesive layer, the “hard” and the “soft” adhesive effects are considered. It was found that the material characteristics of the adhesive layer influence the mode shapes and the corresponding natural frequencies of the composite shallow shell panel system. Additionally, some parametric studies on the natural frequencies are presented.