A regression based hourly day ahead solar irradiance forecasting model by labview using cloud cover data

O. Ceylan, M. Starke, P. Irminger, B. Ollis, K. Tomsovic
{"title":"A regression based hourly day ahead solar irradiance forecasting model by labview using cloud cover data","authors":"O. Ceylan, M. Starke, P. Irminger, B. Ollis, K. Tomsovic","doi":"10.1109/ELECO.2015.7394592","DOIUrl":null,"url":null,"abstract":"This paper applies a regression based numerical method for photovoltaic power output hourly forecast. The method uses a historical data composed of irradiance, azimuth, zenith angle and time of day information. In every run of the forecast program, publicly available cloud cover forecast data for the following day is obtained, and by using a numerical regression based method a function is fit. Then by using the publicly available temperature forecast data, forecasted irradiance data, and computed solar position (zenith, azimuth) data, both power output and temperature module output of PV array is computed. Numerical forecast results show that, they are in accordance with the actual data.","PeriodicalId":369687,"journal":{"name":"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECO.2015.7394592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper applies a regression based numerical method for photovoltaic power output hourly forecast. The method uses a historical data composed of irradiance, azimuth, zenith angle and time of day information. In every run of the forecast program, publicly available cloud cover forecast data for the following day is obtained, and by using a numerical regression based method a function is fit. Then by using the publicly available temperature forecast data, forecasted irradiance data, and computed solar position (zenith, azimuth) data, both power output and temperature module output of PV array is computed. Numerical forecast results show that, they are in accordance with the actual data.
基于回归的labview逐时逐日太阳辐照度预报模型
本文采用基于回归的数值方法进行光伏发电小时预报。该方法使用由辐照度、方位角、天顶角和时间信息组成的历史数据。在每一次预报程序的运行中,都获得了翌日的公开云量预报数据,并使用基于数值回归的方法拟合函数。然后利用公开的温度预报数据、预测的辐照度数据和计算的太阳位置(天顶、方位角)数据,计算光伏阵列的功率输出和温度模块输出。数值预报结果表明,预报结果与实际数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信