Analog Spiking Neuron in 28 nm CMOS

Marwan Besrour, Sarra Zitoun, Jacob Lavoie, Takwa Omrani, K. Koua, Maher Benhouria, Mounir Boukadoum, R. Fontaine
{"title":"Analog Spiking Neuron in 28 nm CMOS","authors":"Marwan Besrour, Sarra Zitoun, Jacob Lavoie, Takwa Omrani, K. Koua, Maher Benhouria, Mounir Boukadoum, R. Fontaine","doi":"10.1109/NEWCAS52662.2022.9842088","DOIUrl":null,"url":null,"abstract":"Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 µm by 5.09 µm when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 µm by 5.09 µm when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.
28纳米CMOS模拟脉冲神经元
由于大数据革命,传统的计算机集群面临着很大的限制。我们需要高效的边缘设备,将机器学习算法的力量从耗电的房间服务器带到移动消费者平台。神经形态工程是开发下一代边缘设备的一个很有前途的途径,该设备将高计算能力与小尺寸的低功耗结合在一起。本文展示了模拟/混合信号CMOS神经形态系统在片上(NeuroSoC)的概念证明,提出了一种低功耗设计的泄漏集成点火(LIF)神经元。该设计使用8个晶体管和2个电容器,以降低复杂性,并有可能导致非常密集的系统。当在28 nm CMOS中实现时,所提出的模型消耗1.2 fJ/尖峰,占用6.73µm × 5.09µm的有效面积。最大尖峰频率为343 kHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信