Towards Efficient Big Data Storage With MapReduce Deduplication System

C. Joe, J. S. Raj, S. Smys
{"title":"Towards Efficient Big Data Storage With MapReduce Deduplication System","authors":"C. Joe, J. S. Raj, S. Smys","doi":"10.4018/IJITWE.2021040103","DOIUrl":null,"url":null,"abstract":"In the big data era, there is a high requirement for data storage and processing. The conventional approach faces a great challenge, and de-duplication is an excellent approach to reduce the storage space and computational time. Many existing approaches take much time to pinpoint the similar data. MapReduce de-duplication system is proposed to attain high duplication ratio. MapReduce is the parallel processing approach that helps to process large number of files in less time. The proposed system uses two threshold two divisor with switch algorithm for chunking. Switch is the average parameter used by TTTD-S to minimize the chunk size variance. Hashing using SHA-3 and fractal tree indexing is used here. In fractal index tree, read and write takes place at the same time. Data size after de-duplication, de-duplication ratio, throughput, hash time, chunk time, and de-duplication time are the parameters used. The performance of the system is tested by college scorecard and ZCTA dataset. The experimental results show that the proposed system can lessen the duplicity and processing time.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2021040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the big data era, there is a high requirement for data storage and processing. The conventional approach faces a great challenge, and de-duplication is an excellent approach to reduce the storage space and computational time. Many existing approaches take much time to pinpoint the similar data. MapReduce de-duplication system is proposed to attain high duplication ratio. MapReduce is the parallel processing approach that helps to process large number of files in less time. The proposed system uses two threshold two divisor with switch algorithm for chunking. Switch is the average parameter used by TTTD-S to minimize the chunk size variance. Hashing using SHA-3 and fractal tree indexing is used here. In fractal index tree, read and write takes place at the same time. Data size after de-duplication, de-duplication ratio, throughput, hash time, chunk time, and de-duplication time are the parameters used. The performance of the system is tested by college scorecard and ZCTA dataset. The experimental results show that the proposed system can lessen the duplicity and processing time.
利用MapReduce重复数据删除系统实现高效大数据存储
在大数据时代,对数据的存储和处理有很高的要求。传统的方法面临着巨大的挑战,重复数据删除是减少存储空间和计算时间的一种很好的方法。许多现有的方法需要花费大量的时间来确定相似的数据。提出了MapReduce重复数据删除系统,以实现高重复率。MapReduce是一种并行处理方法,可以在更短的时间内处理大量文件。该系统采用双阈值双除数开关算法进行分块。Switch是TTTD-S用来最小化块大小差异的平均参数。这里使用SHA-3哈希和分形树索引。在分形索引树中,读和写是同时发生的。重复数据删除后的数据大小、重复数据删除率、吞吐量、哈希时间、chunk时间和重复数据删除时间是使用的参数。通过高校计分卡和ZCTA数据集对系统的性能进行了测试。实验结果表明,该系统可以有效地减少数据的重复和处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信