A mini-batch discriminative feature weighting algorithm for LBP - Based face recognition

O. Nikisins, M. Greitans
{"title":"A mini-batch discriminative feature weighting algorithm for LBP - Based face recognition","authors":"O. Nikisins, M. Greitans","doi":"10.1109/IST.2012.6295521","DOIUrl":null,"url":null,"abstract":"This paper proposes a mini-batch discriminative feature weighting methodology for minimization of classification error in datasets with considerable number of classes and poor intra class information. Presented approach improves the classification system by enhancing the components more relevant to the recognition. It is based on the maximization of interclass Euclidean distance by utilization of information from all classes. A weighted nearest neighbor classifier is used for the classification. A mini-batch principle is implemented into the training process in order to boost the learning speed, which is a bottleneck for traditional batch algorithms. We report how the weighting can be applied to the task of Local Binary Patterns-based face recognition. The performance of the algorithm is evaluated on a color FERET database.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a mini-batch discriminative feature weighting methodology for minimization of classification error in datasets with considerable number of classes and poor intra class information. Presented approach improves the classification system by enhancing the components more relevant to the recognition. It is based on the maximization of interclass Euclidean distance by utilization of information from all classes. A weighted nearest neighbor classifier is used for the classification. A mini-batch principle is implemented into the training process in order to boost the learning speed, which is a bottleneck for traditional batch algorithms. We report how the weighting can be applied to the task of Local Binary Patterns-based face recognition. The performance of the algorithm is evaluated on a color FERET database.
基于LBP的人脸识别小批量判别特征加权算法
本文提出了一种小批量判别特征加权方法,用于最小化类数量多且类内信息差的数据集的分类误差。该方法通过增强与识别更相关的成分来改进分类系统。它是利用所有类的信息,使类间的欧几里得距离最大化。使用加权最近邻分类器进行分类。在训练过程中引入了小批处理原理,提高了传统批处理算法的学习速度。我们报告了如何将加权应用于基于局部二值模式的人脸识别任务。在彩色FERET数据库上对算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信