A New Clustering Method Based on Weighted Kernel K-Means for Non-linear Data

A. Rasouli, M. A. Maarof, M. Shamsi
{"title":"A New Clustering Method Based on Weighted Kernel K-Means for Non-linear Data","authors":"A. Rasouli, M. A. Maarof, M. Shamsi","doi":"10.1109/SoCPaR.2009.17","DOIUrl":null,"url":null,"abstract":"Clustering is the process of gathering objects into groups based on their feature’s similarity. In this paper, we concentrate on Weighted Kernel K-Means method for its capability to manage nonlinear separability and high dimensionality in the data. A new slight modification of WKM algorithm has been proposed and tested on real Rice data. The results show that the accuracy of proposed algorithm is higher than other famous clustering algorithm and ensures that the WKM is a good solution for real world problems.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering is the process of gathering objects into groups based on their feature’s similarity. In this paper, we concentrate on Weighted Kernel K-Means method for its capability to manage nonlinear separability and high dimensionality in the data. A new slight modification of WKM algorithm has been proposed and tested on real Rice data. The results show that the accuracy of proposed algorithm is higher than other famous clustering algorithm and ensures that the WKM is a good solution for real world problems.
基于加权核k均值的非线性数据聚类新方法
聚类是根据特征的相似性将对象聚成组的过程。由于加权核k -均值方法具有处理数据的非线性可分性和高维性的能力,因此本文主要研究加权核k -均值方法。提出了一种对WKM算法稍加改进的新算法,并在实际水稻数据上进行了测试。结果表明,该算法的准确率高于其他著名的聚类算法,保证了WKM算法是解决实际问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信