Jiaji He, Haocheng Ma, Xiaolong Guo, Yiqiang Zhao, Yier Jin
{"title":"Design for EM Side-Channel Security through Quantitative Assessment of RTL Implementations","authors":"Jiaji He, Haocheng Ma, Xiaolong Guo, Yiqiang Zhao, Yier Jin","doi":"10.1109/ASP-DAC47756.2020.9045426","DOIUrl":null,"url":null,"abstract":"Electromagnetic (EM) side-channel attacks aim at extracting secret information from cryptographic hardware implementations. Countermeasures have been proposed at device level, register-transfer level (RTL) and layout level, though efficient, there are still requirements for quantitative assessment of the hardware implementations’ resistance against EM side-channel attacks. In this paper, we propose a design for EM side-channel security evaluation and optimization framework based on the t-test evaluation results derived from RTL hardware implementations. Different implementations of the same cryptographic algorithm are evaluated under different hypothesis leakage models considering the driven capabilities of logic components, and the evaluation results are validated with side-channel attacks on FPGA platform. Experimental results prove the feasibility of the proposed side-channel leakage evaluation method at pre-silicon stage. The remedies and suggested security design rules are also discussed.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Electromagnetic (EM) side-channel attacks aim at extracting secret information from cryptographic hardware implementations. Countermeasures have been proposed at device level, register-transfer level (RTL) and layout level, though efficient, there are still requirements for quantitative assessment of the hardware implementations’ resistance against EM side-channel attacks. In this paper, we propose a design for EM side-channel security evaluation and optimization framework based on the t-test evaluation results derived from RTL hardware implementations. Different implementations of the same cryptographic algorithm are evaluated under different hypothesis leakage models considering the driven capabilities of logic components, and the evaluation results are validated with side-channel attacks on FPGA platform. Experimental results prove the feasibility of the proposed side-channel leakage evaluation method at pre-silicon stage. The remedies and suggested security design rules are also discussed.