Design for EM Side-Channel Security through Quantitative Assessment of RTL Implementations

Jiaji He, Haocheng Ma, Xiaolong Guo, Yiqiang Zhao, Yier Jin
{"title":"Design for EM Side-Channel Security through Quantitative Assessment of RTL Implementations","authors":"Jiaji He, Haocheng Ma, Xiaolong Guo, Yiqiang Zhao, Yier Jin","doi":"10.1109/ASP-DAC47756.2020.9045426","DOIUrl":null,"url":null,"abstract":"Electromagnetic (EM) side-channel attacks aim at extracting secret information from cryptographic hardware implementations. Countermeasures have been proposed at device level, register-transfer level (RTL) and layout level, though efficient, there are still requirements for quantitative assessment of the hardware implementations’ resistance against EM side-channel attacks. In this paper, we propose a design for EM side-channel security evaluation and optimization framework based on the t-test evaluation results derived from RTL hardware implementations. Different implementations of the same cryptographic algorithm are evaluated under different hypothesis leakage models considering the driven capabilities of logic components, and the evaluation results are validated with side-channel attacks on FPGA platform. Experimental results prove the feasibility of the proposed side-channel leakage evaluation method at pre-silicon stage. The remedies and suggested security design rules are also discussed.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Electromagnetic (EM) side-channel attacks aim at extracting secret information from cryptographic hardware implementations. Countermeasures have been proposed at device level, register-transfer level (RTL) and layout level, though efficient, there are still requirements for quantitative assessment of the hardware implementations’ resistance against EM side-channel attacks. In this paper, we propose a design for EM side-channel security evaluation and optimization framework based on the t-test evaluation results derived from RTL hardware implementations. Different implementations of the same cryptographic algorithm are evaluated under different hypothesis leakage models considering the driven capabilities of logic components, and the evaluation results are validated with side-channel attacks on FPGA platform. Experimental results prove the feasibility of the proposed side-channel leakage evaluation method at pre-silicon stage. The remedies and suggested security design rules are also discussed.
通过RTL实现的定量评估来设计EM侧信道安全性
电磁(EM)侧信道攻击的目的是从加密硬件实现中提取秘密信息。在器件级、寄存器-传输级(RTL)和布局级提出了对策,虽然有效,但仍然需要定量评估硬件实现对EM侧信道攻击的抵抗能力。在本文中,我们提出了一个基于RTL硬件实现的t检验评估结果的EM侧信道安全评估和优化框架设计。考虑到逻辑组件的驱动能力,在不同的假设泄漏模型下对同一密码算法的不同实现进行了评估,并在FPGA平台上利用侧信道攻击对评估结果进行了验证。实验结果证明了该方法在预硅阶段的可行性。还讨论了补救措施和建议的安全设计规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信