Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models

Jens Schreiber, Artjom Buschin, B. Sick
{"title":"Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models","authors":"Jens Schreiber, Artjom Buschin, B. Sick","doi":"10.18420/inf2019_74","DOIUrl":null,"url":null,"abstract":"Despite the increasing importance of forecasts of renewable energy, current planning studies only address a general estimate of the forecast quality to be expected and selected forecast horizons. \nHowever, these estimates allow only a limited and highly uncertain use in the planning of electric power distribution. More reliable planning processes require considerably more information about future forecast quality. \nIn this article, we present an in-depth analysis and comparison of influencing factors regarding uncertainty in wind and photovoltaic power forecasts, based on four different machine learning (ML) models. \nIn our analysis, we found substantial differences in uncertainty depending on ML models, data coverage, and seasonal patterns that have to be considered in future planning studies.","PeriodicalId":434189,"journal":{"name":"GI-Jahrestagung","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI-Jahrestagung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/inf2019_74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Despite the increasing importance of forecasts of renewable energy, current planning studies only address a general estimate of the forecast quality to be expected and selected forecast horizons. However, these estimates allow only a limited and highly uncertain use in the planning of electric power distribution. More reliable planning processes require considerably more information about future forecast quality. In this article, we present an in-depth analysis and comparison of influencing factors regarding uncertainty in wind and photovoltaic power forecasts, based on four different machine learning (ML) models. In our analysis, we found substantial differences in uncertainty depending on ML models, data coverage, and seasonal patterns that have to be considered in future planning studies.
风电和光伏发电预测误差的影响:基于机器学习模型的研究
尽管可再生能源的预测越来越重要,但目前的规划研究只涉及对预期预测质量和选定预测范围的一般估计。然而,这些估计只允许在电力分配规划中有限和高度不确定的使用。更可靠的规划过程需要更多关于未来预测质量的信息。在本文中,我们基于四种不同的机器学习(ML)模型,对风能和光伏发电预测中不确定性的影响因素进行了深入的分析和比较。在我们的分析中,我们发现了在未来的规划研究中必须考虑的ML模型、数据覆盖范围和季节模式的不确定性的实质性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信