An Advanced Motion Prediction for Targeted Small Moving Objects

Dr. S. Kayalvili, J. J. Eulogia
{"title":"An Advanced Motion Prediction for Targeted Small Moving Objects","authors":"Dr. S. Kayalvili, J. J. Eulogia","doi":"10.56025/ijaresm.2023.113231306","DOIUrl":null,"url":null,"abstract":"For autonomous robots, small target motion detectionin complicated natural environments is an extremely challenging task. The extremely efficient visual systems of insects detect mates and trackprey, though the target occupy minute degrees of its visual field. Small target motion relies on the excellent sensitivityof specialized neurons, called Small TargetsMotion Detector (STMD). The already existing models based on STMD, hugely depend on visual contrast butshows poor performance in complicated natural environments, whereas small targets commonly exhibit highly low contrast against its backgrounds nearby. Here, we frame an attentionpredictionguided visual system to break the limitation. It hasfive main subsystems, a) Acquisition Moduleb) Process Modulec) Attention Module d) Action Module e) Log Module. These Modules Capture the image when an abnormal motion occurs and then enhanced the image, stores. The image gets validated and sends to the relevant destination receiver.detailed experiments on various real-world datasets prove the efficiency and majority of this system in the detection ofminute, lowcontrast movements of targets against complicated natural environment. This method is more efficient andproductive because the recording and storage take place when the abrupt changes occur. It is more cost effective.","PeriodicalId":314707,"journal":{"name":"International Journal of All Research Education and Scientific Methods","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of All Research Education and Scientific Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56025/ijaresm.2023.113231306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For autonomous robots, small target motion detectionin complicated natural environments is an extremely challenging task. The extremely efficient visual systems of insects detect mates and trackprey, though the target occupy minute degrees of its visual field. Small target motion relies on the excellent sensitivityof specialized neurons, called Small TargetsMotion Detector (STMD). The already existing models based on STMD, hugely depend on visual contrast butshows poor performance in complicated natural environments, whereas small targets commonly exhibit highly low contrast against its backgrounds nearby. Here, we frame an attentionpredictionguided visual system to break the limitation. It hasfive main subsystems, a) Acquisition Moduleb) Process Modulec) Attention Module d) Action Module e) Log Module. These Modules Capture the image when an abnormal motion occurs and then enhanced the image, stores. The image gets validated and sends to the relevant destination receiver.detailed experiments on various real-world datasets prove the efficiency and majority of this system in the detection ofminute, lowcontrast movements of targets against complicated natural environment. This method is more efficient andproductive because the recording and storage take place when the abrupt changes occur. It is more cost effective.
目标小运动物体的高级运动预测
对于自主机器人来说,复杂自然环境下的小目标运动检测是一项极具挑战性的任务。昆虫极其高效的视觉系统探测配偶和追踪猎物,尽管目标只占其视野的极小范围。小目标运动依赖于被称为小目标运动检测器(STMD)的特殊神经元的出色灵敏度。现有的基于STMD的模型在很大程度上依赖于视觉对比度,但在复杂的自然环境中表现不佳,而小目标通常在其附近的背景下表现出非常低的对比度。在此,我们构建了一个注意力预测引导的视觉系统来打破这一限制。系统主要分为五大子系统:a)采集模块b)过程模块c)注意模块d)动作模块e)日志模块。这些模块在发生异常运动时捕获图像,然后对图像进行增强、存储。在各种真实数据集上的详细实验证明了该系统在检测复杂自然环境下目标的微小、低对比度运动方面的效率和优势。这种方法效率更高,因为记录和存储是在突变发生时进行的。这样成本效益更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信