Development of an Integrated Optofluidic Platform for Droplet and Micro Particle Sensing - Microflow Analyzer for Interrogating Self Aligned Droplets and Droplet Encapsulated Micro Objects

P. Shivhare, A. Prabhakar, A. Sen
{"title":"Development of an Integrated Optofluidic Platform for Droplet and Micro Particle Sensing - Microflow Analyzer for Interrogating Self Aligned Droplets and Droplet Encapsulated Micro Objects","authors":"P. Shivhare, A. Prabhakar, A. Sen","doi":"10.5220/0006174801710178","DOIUrl":null,"url":null,"abstract":"Here we report the development of a micro flow analyser that integrates digital microfluidics technology with optoelectronics for the detection of micron size droplets and particles. Digital microfluidics is employed for the encapsulation of microparticles inside droplets that self-align at the centre of a microchannel thus eliminates the need of complicated 3D focusing. Optoelectronics comprise a laser source and detectors for the measurement of forward scatter (FSC), side scatter (SSC) and fluorescence (FL) signals from the microparticles. The optoelectronics was first used with a simple 2D flow focusing channel to detect microparticles which showed uncertainty in the data due to lack of 3D focusing. The integrated device with digital microfluidics technology and optoelectronics was then used for the enumeration and detection of Rhodamine droplets of different size. Rhodamine droplets of different size were characterized based on FSC, SSC and FL. Finally, the device was used for the detection of fluorescent microbeads encapsulated inside aqueous droplets.","PeriodicalId":357085,"journal":{"name":"International Conference on Biomedical Electronics and Devices","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biomedical Electronics and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006174801710178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here we report the development of a micro flow analyser that integrates digital microfluidics technology with optoelectronics for the detection of micron size droplets and particles. Digital microfluidics is employed for the encapsulation of microparticles inside droplets that self-align at the centre of a microchannel thus eliminates the need of complicated 3D focusing. Optoelectronics comprise a laser source and detectors for the measurement of forward scatter (FSC), side scatter (SSC) and fluorescence (FL) signals from the microparticles. The optoelectronics was first used with a simple 2D flow focusing channel to detect microparticles which showed uncertainty in the data due to lack of 3D focusing. The integrated device with digital microfluidics technology and optoelectronics was then used for the enumeration and detection of Rhodamine droplets of different size. Rhodamine droplets of different size were characterized based on FSC, SSC and FL. Finally, the device was used for the detection of fluorescent microbeads encapsulated inside aqueous droplets.
液滴和微粒子传感集成光流平台的开发——用于自对准液滴和液滴封装微物体的微流分析仪
在这里,我们报告了一种集成了数字微流体技术和光电子技术的微流分析仪的开发,用于检测微米大小的液滴和颗粒。数字微流体被用于将微颗粒封装在微通道中心自对准的液滴内,从而消除了复杂的3D聚焦的需要。光电子学包括激光源和探测器,用于测量来自微粒的前向散射(FSC),侧散射(SSC)和荧光(FL)信号。光电器件首先与一个简单的二维流动聚焦通道一起用于检测由于缺乏三维聚焦而导致数据不确定的微粒。采用数字微流控技术与光电子技术相结合的集成装置,对不同粒径罗丹明液滴进行计数检测。通过FSC、SSC和FL对不同粒径罗丹明微滴进行表征,最后将该装置用于检测微滴内的荧光微珠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信