Penerapan Algoritma Decision Tree Untuk Klasifikasi KIPI Vaksin Covid-19

Fajar Athallah Yusuf, M. Alfaridzi, Tazkiyah Herdi
{"title":"Penerapan Algoritma Decision Tree Untuk Klasifikasi KIPI Vaksin Covid-19","authors":"Fajar Athallah Yusuf, M. Alfaridzi, Tazkiyah Herdi","doi":"10.22441/fifo.2022.v14i2.005","DOIUrl":null,"url":null,"abstract":"Pandemi COVID-19 merupakan wabah yang terjadi di seluruh dunia, terutama Indonesia. Pandemi COVID-19 telah melumpuhkan berbagai bidang di sektor publik dan banyak penduduk terkena Sars-Cov-2 yang menyebabkan kematian bagi masyarakat dan tenaga kesehatan. dalam melaksanakan Program Vaksinasi Coronavirus di Indonesia. Banyak masyarakat yang khawatir terhadap Vaksinasi Coronavirus dikarenakan hoax terhadap Vaksinasi Coronavirus dan ketakutan dengan dampak KIPI. Penulis melakukan penelitian dengan menggunakan metode Decision Tree untuk melakukan klasifikasi KIPI Vaksin COVID-19 menggunakan data Vaksin COVID-19 siswa/siswi salah satu SMP Kota Bekasi. Berdasarkan hasil penelitian yang didapatkan, penelitian menghasilkan model Decision Tree dari 4 atribut yang didapatkan lalu dikategorikan dengan 2 variabel yang berbeda yakni variabel target dan variabel prediksi. Penelitian menghasilkan model Decision Tree lalu melakukan perbandingan dengan algoritma naive bayes dengan masing-masing keakuratan sebesar 89,5349% dan 88.3721 %. Hasil ini menunjukan algoritma Decision Tree memiliki keakuratan lebih tinggi dibandingkan dengan algoritma Naïve Bayes sehingga algoritma Decision Tree  merupakan teknik yang tepat dalam hal pengklasifikasian.  ","PeriodicalId":280491,"journal":{"name":"Jurnal Ilmiah FIFO","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah FIFO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/fifo.2022.v14i2.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pandemi COVID-19 merupakan wabah yang terjadi di seluruh dunia, terutama Indonesia. Pandemi COVID-19 telah melumpuhkan berbagai bidang di sektor publik dan banyak penduduk terkena Sars-Cov-2 yang menyebabkan kematian bagi masyarakat dan tenaga kesehatan. dalam melaksanakan Program Vaksinasi Coronavirus di Indonesia. Banyak masyarakat yang khawatir terhadap Vaksinasi Coronavirus dikarenakan hoax terhadap Vaksinasi Coronavirus dan ketakutan dengan dampak KIPI. Penulis melakukan penelitian dengan menggunakan metode Decision Tree untuk melakukan klasifikasi KIPI Vaksin COVID-19 menggunakan data Vaksin COVID-19 siswa/siswi salah satu SMP Kota Bekasi. Berdasarkan hasil penelitian yang didapatkan, penelitian menghasilkan model Decision Tree dari 4 atribut yang didapatkan lalu dikategorikan dengan 2 variabel yang berbeda yakni variabel target dan variabel prediksi. Penelitian menghasilkan model Decision Tree lalu melakukan perbandingan dengan algoritma naive bayes dengan masing-masing keakuratan sebesar 89,5349% dan 88.3721 %. Hasil ini menunjukan algoritma Decision Tree memiliki keakuratan lebih tinggi dibandingkan dengan algoritma Naïve Bayes sehingga algoritma Decision Tree  merupakan teknik yang tepat dalam hal pengklasifikasian.  
COVID-19大流行是一种世界性的流行病,尤其是印度尼西亚。COVID-19大流行已经使公共部门失去了控制,许多人暴露在Sars-Cov-2的影响下,这导致了公众和卫生工作者的死亡。在印尼执行Coronavirus疫苗计划。许多人担心皮质病毒疫苗接种,因为皮质疫苗对皮质疫苗的恶作剧和对KIPI影响的恐惧。作者使用Decision Tree方法对COVID-19疫苗COVID-19学生/女孩进行了研究。根据所获得的研究结果,该研究将所获得的4个属性中的Decision Tree模型分为2个不同的目标变量和预测变量。研究产生了Decision Tree模型,并将其与nave bayes算法进行比较,其准确性为89.5349%,88.3721 %。结果表明,Decision Tree算法比Naive Bayes算法更准确,所以Decision Tree算法是一种精确的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信