Observation of trap-assisted steep sub-threshold swing in schottky source/drain Al2O3/InAlN/GaN MISHEMT

Qi Zhou, Hongwei Chen, Chunhua Zhou, Zhihong Feng, S. Cai, K. J. Chen
{"title":"Observation of trap-assisted steep sub-threshold swing in schottky source/drain Al2O3/InAlN/GaN MISHEMT","authors":"Qi Zhou, Hongwei Chen, Chunhua Zhou, Zhihong Feng, S. Cai, K. J. Chen","doi":"10.1109/DRC.2011.5994417","DOIUrl":null,"url":null,"abstract":"Devices with steep subthreshold swing (SS) are of great interest and significance in view of increasing subthreshold leakage current with the continuous MOSFET scaling. The standby power dissipation has grown due to the nonscalability of the SS to below 60 mV/dec at room temperature (RT). To circumvent this obstacle, novel devices that employ various turn-on mechanisms have been proposed1–4. In this work, we report the observation of steep SS∼20 mV/dec in Schottky source/drain (SSD) Al2O3/InAlN/GaN MIS-HEMTs over a drain bias range of 0.1 to 5 V. The devices also feature high ION/IOFF ratio (∼109) and appreciable current drive of IDmax=230 mA/mm at room temperature. The devices are also characterized at elevated temperature (T) up to 155 °C. Steep SS lower than the theoretical diffusion limit is consistently observed over the testing temperature range. It is suggested that the steep switching behavior is obtained through the means of a dynamic de-trapping process at the Al2O3/InAlN interface. The dynamic de-trapping enables a dynamic negative shift in the threshold voltage during the gate upswing and effectively facilitates the formation of a sub-threshold swing as steep as 18 mV/dec.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Devices with steep subthreshold swing (SS) are of great interest and significance in view of increasing subthreshold leakage current with the continuous MOSFET scaling. The standby power dissipation has grown due to the nonscalability of the SS to below 60 mV/dec at room temperature (RT). To circumvent this obstacle, novel devices that employ various turn-on mechanisms have been proposed1–4. In this work, we report the observation of steep SS∼20 mV/dec in Schottky source/drain (SSD) Al2O3/InAlN/GaN MIS-HEMTs over a drain bias range of 0.1 to 5 V. The devices also feature high ION/IOFF ratio (∼109) and appreciable current drive of IDmax=230 mA/mm at room temperature. The devices are also characterized at elevated temperature (T) up to 155 °C. Steep SS lower than the theoretical diffusion limit is consistently observed over the testing temperature range. It is suggested that the steep switching behavior is obtained through the means of a dynamic de-trapping process at the Al2O3/InAlN interface. The dynamic de-trapping enables a dynamic negative shift in the threshold voltage during the gate upswing and effectively facilitates the formation of a sub-threshold swing as steep as 18 mV/dec.
捕集阱辅助下肖特基源/漏Al2O3/InAlN/GaN MISHEMT陡亚阈值摆动的观察
随着MOSFET的持续缩放,亚阈值摆幅急剧增大的器件具有重要的研究意义。由于SS在室温(RT)下不能扩展到60 mV/dec以下,因此待机功耗增加。为了克服这一障碍,已经提出了采用各种开启机制的新型装置1 - 4。在这项工作中,我们报告了在0.1至5 V的漏极偏置范围内,在肖特基源/漏极(SSD) Al2O3/InAlN/GaN miss - hemts中观察到陡SS ~ 20 mV/dec。该器件还具有高离子/IOFF比(~ 109)和室温下IDmax=230 mA/mm的可观电流驱动。该器件还具有高达155°C的高温(T)特性。在测试温度范围内,始终观察到低于理论扩散极限的陡SS。结果表明,通过Al2O3/InAlN界面的动态脱陷过程,可以获得陡峭的开关行为。动态去捕获使阈值电压在栅极上摆期间发生动态负移,并有效地促进了陡达18 mV/dec的亚阈值摆幅的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信