Modeling and Forecasting Inflation in Nigeria: A Time Series Regression with ARIMA Method

Emwinloghosa K.G., Pamela O.O., Paschal N.I., Eloho S.O., Agu C.
{"title":"Modeling and Forecasting Inflation in Nigeria: A Time Series Regression with ARIMA Method","authors":"Emwinloghosa K.G., Pamela O.O., Paschal N.I., Eloho S.O., Agu C.","doi":"10.52589/ajesd-hfyc2bnw","DOIUrl":null,"url":null,"abstract":"This study uses time series regression with autoregressive integrated moving average (ARIMA) modeling to establish a model for forecasting inflation in Nigeria for the period 1981-2020. Akaike Information Criterion Corrected (AICC) and Bayesian Information Criterion (BIC) were used to select the best model among competing models. Through these methods, regression with ARIMA (0,0,1) error was selected as the most parsimonious model for inflation forecasting in Nigeria. The results of the out-sample-forecast show that a high inflation rate will be experienced by the end of 2023, and between 2024 and 2030, the inflation rate will be alternating but will maintain a lower rate than that of 2023.","PeriodicalId":406884,"journal":{"name":"African Journal of Economics and Sustainable Development","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Economics and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52589/ajesd-hfyc2bnw","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses time series regression with autoregressive integrated moving average (ARIMA) modeling to establish a model for forecasting inflation in Nigeria for the period 1981-2020. Akaike Information Criterion Corrected (AICC) and Bayesian Information Criterion (BIC) were used to select the best model among competing models. Through these methods, regression with ARIMA (0,0,1) error was selected as the most parsimonious model for inflation forecasting in Nigeria. The results of the out-sample-forecast show that a high inflation rate will be experienced by the end of 2023, and between 2024 and 2030, the inflation rate will be alternating but will maintain a lower rate than that of 2023.
尼日利亚通货膨胀建模与预测:基于ARIMA方法的时间序列回归
本研究采用时间序列回归和自回归综合移动平均(ARIMA)模型建立了预测尼日利亚1981-2020年通货膨胀的模型。利用修正的赤池信息准则(AICC)和贝叶斯信息准则(BIC)从竞争模型中选择最佳模型。通过这些方法,选择ARIMA(0,0,1)误差的回归模型作为尼日利亚通货膨胀预测的最简洁模型。外样本预测结果表明,到2023年底,通货膨胀率将处于高位,2024 - 2030年期间,通货膨胀率将呈交替变化,但将保持低于2023年的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信