Efficiently irreducible bases in multiple-valued logic

Grant R. Pogosyan
{"title":"Efficiently irreducible bases in multiple-valued logic","authors":"Grant R. Pogosyan","doi":"10.1109/ISMVL.1996.508371","DOIUrl":null,"url":null,"abstract":"Basis is a functionally complete set of multiple-valued logic functions that is irreducible, i.e. contains no complete proper subsets. Functional completeness of a set means that for any function in MVL there exists a formula over this set that implements it. However, this classical definition of basis does not consider the efficiency of implementation, particularly, it does not guarantee the existence of an efficient implementation regarding the complexity of formal expressions. In this note the notion of efficiently irreducible basis is introduced, and is termed /spl epsiv/-basis. A criterion for the basic set of operations to be efficiently irreducible is given. In the cases of Boolean and ternary logic functions complete enumeration and description of /spl epsiv/-bases are presented.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"12 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Basis is a functionally complete set of multiple-valued logic functions that is irreducible, i.e. contains no complete proper subsets. Functional completeness of a set means that for any function in MVL there exists a formula over this set that implements it. However, this classical definition of basis does not consider the efficiency of implementation, particularly, it does not guarantee the existence of an efficient implementation regarding the complexity of formal expressions. In this note the notion of efficiently irreducible basis is introduced, and is termed /spl epsiv/-basis. A criterion for the basic set of operations to be efficiently irreducible is given. In the cases of Boolean and ternary logic functions complete enumeration and description of /spl epsiv/-bases are presented.
多值逻辑中的有效不可约基
基是不可约的多值逻辑函数的功能完备集,即不包含完全真子集。一个集合的功能完备性意味着对于MVL中的任何函数,在这个集合上存在一个实现它的公式。然而,这种经典的基的定义没有考虑实现的效率,特别是对于形式表达式的复杂性,它不能保证有效实现的存在。本文引入了有效不可约基的概念,并将其称为有效不可约基。给出了基本运算集有效不可约的一个准则。在布尔逻辑函数和三元逻辑函数的情况下,给出了/spl / epsiv/-基的完整枚举和描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信