{"title":"Temperature aware thread migration in 3D architecture with stacked DRAM","authors":"Dali Zhao, H. Homayoun, A. Veidenbaum","doi":"10.1109/ISQED.2013.6523594","DOIUrl":null,"url":null,"abstract":"A 3D architecture with DRAM memory stacked on a multi-core processor has many benefits for the embedded system. Compared with a conventional 2D design, it reduces memory access latency, increases memory bandwidth and reduces energy consumption. However it poses a thermal challenge as the heat generated by the processor cannot dissipate efficiently through the DRAM memory layer. Due to the fact that DRAM is very sensitive to high temperature as well as temperature variance, 3D stacking causes more failures to occur because DRAM thermal variance is higher than the conventional 2D architecture. To address this thermal challenge we propose to reduce temperature variance and peak temperature of a 3D multi-core processor and stacked DRAM by thermally aware thread migration among processor cores. This method has very limited impact on processor performance. Using migration-based policy we reduce peak steady-state temperature in the processor by up to 8.3 degrees Celsius, with the average of 4.7 degrees.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
A 3D architecture with DRAM memory stacked on a multi-core processor has many benefits for the embedded system. Compared with a conventional 2D design, it reduces memory access latency, increases memory bandwidth and reduces energy consumption. However it poses a thermal challenge as the heat generated by the processor cannot dissipate efficiently through the DRAM memory layer. Due to the fact that DRAM is very sensitive to high temperature as well as temperature variance, 3D stacking causes more failures to occur because DRAM thermal variance is higher than the conventional 2D architecture. To address this thermal challenge we propose to reduce temperature variance and peak temperature of a 3D multi-core processor and stacked DRAM by thermally aware thread migration among processor cores. This method has very limited impact on processor performance. Using migration-based policy we reduce peak steady-state temperature in the processor by up to 8.3 degrees Celsius, with the average of 4.7 degrees.