Experimental HIl implementation of RNN for detecting cyber physical attacks in AC microgrids

B. Canaan, B. Colicchio, D. Abdeslam
{"title":"Experimental HIl implementation of RNN for detecting cyber physical attacks in AC microgrids","authors":"B. Canaan, B. Colicchio, D. Abdeslam","doi":"10.1109/speedam53979.2022.9842003","DOIUrl":null,"url":null,"abstract":"In this paper, a real-time cyber intrusion detection mechanism based on recurrent neural networks is implemented for detecting cyber-physical attacks targeting AC microgrids (MG). An AutoRegressive eXogenous Neural Network (NARX) model is deployed as an Intelligent Detection System (IDS), to detect cyber-physical anomalies in the behavior of exchanged active power in a connected AC microgrid. Results are validated through a Hardware-in The loop simulation using the Opal RT real-time simulator and an external microcontroller board (Arduino) for Embedding the used Artificial Neural Network ANN.","PeriodicalId":365235,"journal":{"name":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/speedam53979.2022.9842003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a real-time cyber intrusion detection mechanism based on recurrent neural networks is implemented for detecting cyber-physical attacks targeting AC microgrids (MG). An AutoRegressive eXogenous Neural Network (NARX) model is deployed as an Intelligent Detection System (IDS), to detect cyber-physical anomalies in the behavior of exchanged active power in a connected AC microgrid. Results are validated through a Hardware-in The loop simulation using the Opal RT real-time simulator and an external microcontroller board (Arduino) for Embedding the used Artificial Neural Network ANN.
基于RNN的交流微电网网络物理攻击检测实验
本文实现了一种基于递归神经网络的实时网络入侵检测机制,用于检测针对交流微电网的网络物理攻击。采用自回归外源性神经网络(NARX)模型作为智能检测系统(IDS),用于检测连接交流微电网中交换有功功率行为中的网络物理异常。通过使用Opal RT实时模拟器和外部微控制器板(Arduino)嵌入所使用的人工神经网络ANN的硬件内环仿真验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信