Vision-based indoor occupants detection system for intelligent buildings

Dixin Liu, Youtian Du, Qianchuan Zhao, X. Guan
{"title":"Vision-based indoor occupants detection system for intelligent buildings","authors":"Dixin Liu, Youtian Du, Qianchuan Zhao, X. Guan","doi":"10.1109/IST.2012.6295489","DOIUrl":null,"url":null,"abstract":"In intelligent buildings, practical sensing systems designed to gather indoor occupancy information play an indispensable role in improving occupant comfort and energy efficiency by optimizing control strategies of HVAC (Heating, Ventilation and Air Conditioning) system and lighting system. In this paper we propose a novel method for occupant detection based on video surveillances now widely used in buildings. In our method, a two-staged static detector using both Haar-like and HOG (Histograms of Oriented Gradients) features and a template-based motion analysis module are concatenated to detect the heads of occupants rapidly and effectively. The accuracy can satisfy the requirements of the automation systems in intelligent buildings. Experimental results demonstrate the effectiveness and efficiency of the proposed method.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In intelligent buildings, practical sensing systems designed to gather indoor occupancy information play an indispensable role in improving occupant comfort and energy efficiency by optimizing control strategies of HVAC (Heating, Ventilation and Air Conditioning) system and lighting system. In this paper we propose a novel method for occupant detection based on video surveillances now widely used in buildings. In our method, a two-staged static detector using both Haar-like and HOG (Histograms of Oriented Gradients) features and a template-based motion analysis module are concatenated to detect the heads of occupants rapidly and effectively. The accuracy can satisfy the requirements of the automation systems in intelligent buildings. Experimental results demonstrate the effectiveness and efficiency of the proposed method.
基于视觉的智能建筑室内人员检测系统
在智能建筑中,设计用于收集室内占用信息的实用传感系统,通过优化HVAC (Heating, Ventilation and Air Conditioning)系统和照明系统的控制策略,在提高居住者舒适度和能源效率方面发挥着不可或缺的作用。本文提出了一种基于视频监控的建筑物内人员检测新方法。在我们的方法中,使用haar和HOG(定向梯度直方图)特征的两阶段静态检测器和基于模板的运动分析模块相连接,以快速有效地检测居住者的头部。其精度可以满足智能建筑中自动化系统的要求。实验结果证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信