Basic digit sets for radix representation of the integers

D. Matula
{"title":"Basic digit sets for radix representation of the integers","authors":"D. Matula","doi":"10.1109/ARITH.1978.6155789","DOIUrl":null,"url":null,"abstract":"Let Z denote the set of integers. A digit set D ⊂ Z is basic for base β ∊ Z if the set of polynomials {d<inf>m</inf>β<sup>m</sup> + d<inf>m−1</inf> + … + d<inf>1</inf> β+d<inf>0</inf> | d<inf>I</inf> ∊ D} contains a unique representation for every n ε Z. We give necessary and sufficient conditions for D to be basic for β. We exhibit efficient procedures for verifying that D is basic for β, and for computing the representation of any n ε Z when a representation exists. There exist D, & with D basic for β where max {|d| | d ∊ D} > |β|, and more generally, an infinite class of basic digit sets is shown to exist for every base β with |β| ≥ 3. The natural extension to infinite precision radix representation using basic digit sets is considered and a summary of results is presented.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Z denote the set of integers. A digit set D ⊂ Z is basic for base β ∊ Z if the set of polynomials {dmβm + dm−1 + … + d1 β+d0 | dI ∊ D} contains a unique representation for every n ε Z. We give necessary and sufficient conditions for D to be basic for β. We exhibit efficient procedures for verifying that D is basic for β, and for computing the representation of any n ε Z when a representation exists. There exist D, & with D basic for β where max {|d| | d ∊ D} > |β|, and more generally, an infinite class of basic digit sets is shown to exist for every base β with |β| ≥ 3. The natural extension to infinite precision radix representation using basic digit sets is considered and a summary of results is presented.
整数的基数表示的基本数字集
设Z表示整数集。如果多项式集{dmβm + dm−1 +…+ d1 β+d0 | dI D}包含每一个n ε Z的唯一表示,则数字集D Z是基的β Z,则D Z是基的β Z。我们给出了D是基的β Z的充分必要条件。我们展示了有效的程序来验证D是β的基本函数,并在存在表示时计算任何n ε Z的表示。当max {| D | D D} > |β|时,对于β存在D, &与D基本集,更一般地说,对于每一个基底β,且|β|≥3,都存在一个无限类的基本位数集。讨论了用基本数集表示无限精度基数的自然推广,并总结了一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信