Randomly perturbed ergodic averages

Jaeyong Choi, Karin Reinhold-Larsson
{"title":"Randomly perturbed ergodic averages","authors":"Jaeyong Choi, Karin Reinhold-Larsson","doi":"10.1090/bproc/61","DOIUrl":null,"url":null,"abstract":". We consider a class of random ergodic averages, containing averages along random non–integer sequences. For such averages, Cohen & Cuny obtained uniform universal pointwise convergence for functions in L 2 with (cid:2) max(1 , log(1+ | t | )) dμ f < ∞ via a uniform estimation of trigonometric polynomials. We extend this result to L 2 functions satisfying the weaker condition (cid:2) max(1 , log log(1+ | t | )) dμ f < ∞ . We also prove that uniform universal pointwise convergence in L 2 holds for the corresponding smoothed random averages or for random averages whose kernels exhibit sufficient decay at infinity.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We consider a class of random ergodic averages, containing averages along random non–integer sequences. For such averages, Cohen & Cuny obtained uniform universal pointwise convergence for functions in L 2 with (cid:2) max(1 , log(1+ | t | )) dμ f < ∞ via a uniform estimation of trigonometric polynomials. We extend this result to L 2 functions satisfying the weaker condition (cid:2) max(1 , log log(1+ | t | )) dμ f < ∞ . We also prove that uniform universal pointwise convergence in L 2 holds for the corresponding smoothed random averages or for random averages whose kernels exhibit sufficient decay at infinity.
随机扰动遍历平均值
。考虑一类随机遍历平均值,它包含沿随机非整数序列的平均值。对于这样的平均值,Cohen & Cuny通过三角多项式的一致估计,得到了l2中具有(cid:2) max(1, log(1+ | t |)) dμ f <∞的函数的一致泛点收敛性。我们将此结果推广到满足较弱条件(cid:2) max(1, log log(1+ | t |)) dμ f <∞的l2个函数。对于相应的光滑随机平均或核在无穷远处表现出充分衰减的随机平均,我们也证明了l2中的一致泛点收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信