Roundoff error analysis of the PCA networks

T. Szabó, G. Horváth
{"title":"Roundoff error analysis of the PCA networks","authors":"T. Szabó, G. Horváth","doi":"10.1109/IMTC.1997.603954","DOIUrl":null,"url":null,"abstract":"This paper deals with some of the effects of finite precision data representation and arithmetics in principal component analysis (PCA) neural networks. The PCA networks are single layer linear neural networks that use some versions of Oja's learning rule. The paper concentrates on the effects of premature convergence or early termination of the learning process. It determines an approximate analytical expression of the lower limit of the learning rate parameter. Selecting the learning rate below this limit-which depends on the statistical properties of the input data and the quantum size used in the finite precision arithmetics the convergence will slow down significantly or the learning process will stop before converging to the proper weight vector.","PeriodicalId":124893,"journal":{"name":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1997.603954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with some of the effects of finite precision data representation and arithmetics in principal component analysis (PCA) neural networks. The PCA networks are single layer linear neural networks that use some versions of Oja's learning rule. The paper concentrates on the effects of premature convergence or early termination of the learning process. It determines an approximate analytical expression of the lower limit of the learning rate parameter. Selecting the learning rate below this limit-which depends on the statistical properties of the input data and the quantum size used in the finite precision arithmetics the convergence will slow down significantly or the learning process will stop before converging to the proper weight vector.
PCA网络的舍入误差分析
本文讨论了有限精度数据表示和算法在主成分分析(PCA)神经网络中的一些影响。PCA网络是单层线性神经网络,它使用了Oja学习规则的一些版本。本文主要讨论学习过程的过早收敛或过早终止的影响。确定了学习率参数下限的近似解析表达式。选择低于这个限制的学习率——这取决于输入数据的统计特性和有限精度算法中使用的量子大小——收敛速度将显著减慢,或者学习过程将在收敛到适当的权重向量之前停止。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信